OPEN ACCESS PEER-REVIEWED | RESEARCH ARTICLE

Main Article Content

Authors

nFN Salamah
Nur Bambang Priyo Utomo
nFN Munti Yuhana
nFN Widanarni

Abstract

Super-intensive fish culture activities can lead the deterioration of water quality. Biofloc technology application can reduce the ammonia wastes and converts into bacterial biomass that can be used as a food source for fish. This study aimed to analyze the influence of heterotrophic bacterial cell concentrations in water and feed supplementation to improve the culture performances of catfish (C. gariepinus) on biofloc-based culture system. The experiments were conducted within 42 days consisted of five treatments, namely: (K-): system without biofloc, (K+) system with biofloc, (A) biofloc + L1k cells (102 CFU mL-1), (B) biofloc + L1k cells (104 CFU mL-1), and (C) biofloc + L1k cells (106 CFU mL*). The results showed that the growth performance of catfish cultured in biofloc system with the addition heterotrophic bacterial cell concentrations at 104 CFU mL-1 showed the best results compared to other treatments, with the value of survival rate was 92.67% ± 6.92, feed conversion ratio was 0.90 ± 0.07, and daily growth rate of 6.10% ± 0.09. Bacterial cells abundance were ranging from 104 CFU mL-1 up to 108 CFU mL-1, either with or without the addition of hetero-trophic bacterial cells. AbstrakPenerapan teknologi bioflok mampu mengurangi limbah amonia menjadi biomassa bakteri yang dapat dijadikan sebagai sumber pakan bagi ikan. Penelitian ini bertujuan untuk menganalisis pengaruh konsentrasi sel bakteri heterotrofik da-lam air dan pakan suplemen untuk meningkatkan pertumbuhan ikan lele dumbo (Clarias gariepinus) pada sistem berba-sis bioflok. Percobaan dilakukan dengan lima perlakuan, yaitu: (K-) Tanpa bioflok, (K +) Bioflok, (A) Bioflok + L1k (102 CFU mL-1), (B) Bioflok + L1k (104 CFU mL-1), dan (C) Bioflok + L1k (106 CFU mL-1). Empat hari sebelum dilakukan pemeliharaan (H-4) diinokulasikan bakteri heterotrofik sebanyak 10 ml m-3 air dengan konsentrasi sesuai perlakuan dan molase cair 10 g ke media pemeliharaan. Pemeliharaan ikan dilakukan selama 42 hari, dengan frekuensi pem-berian pakan 2 kali sehari dan tingkat pemberian pakan 5% dari biomassa ikan. Pemeliharaan ikan dilakukan selama 42 hari dengan frekuensi pemberian pakan 2 kali sehari dan tingkat pemberian pakan 5% dari biomassa ikan. Penambahan sel bakteri L1k ke dalam media budidaya dilakukan seminggu sekali sebanyak 10 ml m-3 dengan konsentrasi sel 102, 104, dan 106 CFU ml-1. Penambahan molase dilakukan setiap hari ke media bioflok dengan rasio C:N akhir sebesar 15:1. Kinerja pertumbuhan ikan yang diamati meliputi parameter kelangsungan hidup, pertumbuhan, rasio konversi pakan, populasi sel bakteri total dan sel bakteri L1k. Hasil penelitian menunjukkan bahwa kinerja produksi ikan lele dumbo pada perlakuan bioflok lebih baik dibanding tanpa bioflok. Penambahan sel bakteri heterotrofik L1k 104 CFUml-1 menunjukkan hasil terbaik dengan nilai tingkat kelangsungan hidup 92,67% ± 6,92, rasio konversi pakan 0,90 ± 0,07, dan laju pertumbuhan harian 6,10% ± 0,09. Kelimpahan sel bakteri total berkisar dari 104 CFU mL-1 hingga 108 CFU mL-1, baik dengan maupun tanpa penambahan sel bakteri heterotrof.

Keywords:
biofloc , catfish , heterotrophic bacteria , growth performance

Downloads article

Download data is not yet available.

Article Details

Copyright
   

Copyright (c) 2017 Jurnal Iktiologi Indonesia

  Authors who publish with this journal agree to the following terms:  
  a.)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.  
  b.) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.  
  c.) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).  
       
  Creative Commons License
Jurnal Iktiologi Indonesia by Masyarakat Iktiologi Indonesia (MII) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at https://jurnal-iktiologi.org
 

 

References

Asaduzzaman M, Wahab MA, Verdegem MCJ, Benerjee S, Akter T, Hasan MM, Azim ME. 2009. Effects of addition of tilapia Oreochromis niloticus and substrates for periphyton developments on pond ecology and production in C/N-controlled fresh water prawn Macrobrachium rosenbergii farming systems. Aquaculture, 287(3-4): 371-380.

Azim ME, Little DC, Bron IE. 2008. Microbial protein production in activated suspension tanks manipulating C/N ratio in feed and implications for fish culture. Bioresource Technology, 99(9): 3590-3599.

Azim ME, Little DC. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloti-cus). Aquaculture, 283(1-4): 29-35.

Crab R, Avnimelech Y, Defoirdt T, Bossier P, Verstraete W. 2007. Nitrogen removal in aquaculture towards sustainable production. Aquaculture, 270(1-4): 1-14.

De Schryver P, Crab R, Defoirdt T, Boon N, Verstraete W. 2008. The basics of bioflocs technology: The added value for aquaculture. Aquaculture, 277(3-4): 125137.

De Schryver P, Verstraete W. 2008. Nitrogen removal from aquaculture pond water by heterotrophic nitrogen assimilation in lab-scale sequencing batch reactors. Bioresource Technology, 100(3): 1162-1167.

Ebeling JM, Timmons MB, Bisogni JJ. 2006. Engineering analysis of the stoichiometry of photoautotrophic, autotrophic and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture, 257(1-4): 346-358.

Effendie MI. 1979. Metode Biologi Perikanan. Yayasan Dewi Sri, Bogor. 112 p.

Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P. 2014. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish and Shellfish Immunology, 41(2): 332-339.

Ekasari J, Zairin Jr M, Putri DU, Sari NP, Surawidjaja EH, Bossier P. 2015. Biofloc-based reproductive performance of Nile tilapia Oreochromisniloticus L. Brood-stock. Aquaculture Research, 46(2): 509512.

Firdaus R. 2012. Seleksi bakteri kandidat probiotik untuk penghambatan patogen streptococcus agalactiae tipe non-hemolitik pada ikan nila Oreochromis niloticus secara in vitro dan in vivo. Skripsi. Institut Pertanian Bogor. 76 hlm.

Hargreaves JA. 2006. Photosynthetic suspended growth sistems in aquaculture. Aquacultural Engineering, 34(3): 344-363.

Hastuti S, Subandiyono. 2014. Performa produksi ikan lele dumbo (Clarias gariepinus, Burch) yang dipelihara dengan teknologi biofloc. Jurnal Saintek Perikanan 10(1) : 37-42.

Huisman EA. 1987. The Principles of Fish Culture Production. Department of Aquaculture. Wageningen University. Nether-land. 170 p

[KKP] Kementerian Kelautan dan Perikanan. 2014. Statistik Kelautan dan Perikanan 2014. Jakarta: KKP RI. 301 p.

Long L, Yang J, Li Y, Guan C, Wu F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135-141

Ramachandran S, Bairagi A, Ray AK. 2005. Improvement of nutritive value of grass pea (Lathyrus sativus) seed meal in the formulated diets for rohu, Labeo rohita (Hamilton) fingerlings after fermentation with a fish gut bacterium. Bioresource Technology, 96(13): 1465-1472

Rosenberry B. 2006. Meet the Flockers. Shrimp News International: October 1, 2006.

Schneider O, Sereti V, Eding EH, Verreth JAJ. 2005. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquacultural Engineering, 32(3-4): 379401.

Schneider O, Sereti V, Eding EH, Johan, Verreth AJ. 2006. Molasses as C source for hetero-trophic bacteria production on solid fish waste. Aquaculture, 261(4): 1239-1248.

Shafrudin D, Yuniarti, Setiawati M. 2006. Pengaruh kepadatan benih ikan lele dumbo (Cla-rias sp.) terhadap produksi pada sistem budi daya dengan pengendalian nitrogen melalui penambahan tepung terigu. Jurnal AkuakulturIndonesia, 5(2): 137-147.

Sheng GP, Yu HQ, Yue Z. 2006. Factors influencing the production of extracellular polymeric substances by Rhodopseudomonas acidophila. International Biodeterioration andBiodegradation, 58 (2): 89-93.

Toi HT, Boeckx P, Sorgeloos P, Bossier P, Stappen GV. 2013. Bacteria contribute to Artemia nutrition in algae-limited conditions: A laboratory study. Aquaculture, 388-391: 1-7.

Widanarni, Ekasari J, Maryam S. 2012. Evaluation of biofloc technology application on water quality and production performance of red tilapia Oreochromis sp. cultured at different stocking densities. Hayati Journal of Biosciences, 19(2): 73-80.

Yamamoto T, Iwashita Y, Matsunari H, Sugita T, Furuita H, Akimoto A, Okamatsu K, Suzuki N. 2010. Influence of fermentation conditions for soybean meal in a non-fish meal diet on the growth performance and physiological condition of rainbow trout Oncorhynchus mykiss. Aquaculture, 309 (1-4): 173-180

Zonneveld N, Huisman EA, Boon JH. 1991. Prinsip-prinsip Budidaya Ikan. PT. Gra-media Pustaka Utama. Jakarta. 381 hlm.