OPEN ACCESS PEER-REVIEWED | RESEARCH ARTICLE

Main Article Content

Authors

Rini Sahni Putri
Hasrianti Hasrianti
Damis Damis
Muhammad Bibin
Andi Rani Sahni Putri
Muh Kasim
Suhartono Nurdin

Abstract

Makassar Strait is a waters area with a large and relatively fertile water resource potential. The Makassar Strait area represents the confluence zone between the Pacific Ocean and Indian Ocean fish populations. The fertility of the waters makes this area one of the breeding zones for most aquatic biota. This study aims to map the catch of small pelagic fishes with water conditions in the Makassar Strait. The data used in this study was fish catches data from Makassar Strait waters from June to September 2021. Data on environmental conditions in the form of Sea Surface Temperature and chlorophyll-a concentration in the waters during the study period were obtained from the AQUA satellite with MODIS sensors, then combined with the Geographic Information System (GIS). The results of this study indicate that the sea surface temperature range in Makassar Strait waters was between 26.7°C–31.3°C and the concentration of chlorophyll-a was between 0.7 mg/m³ - 1.30 mg/m³. The highest catch points were at two points with the same catch of the purse seine, namely 4,000 kg at 118°51'E and 5°10'59"S and at 118°52'59"E and 5°3'S, while the lowest catch was 5 kg at 118°19'E and 4°57'S. It can be concluded that the presence of fish may be influenced by the water’s conditions favored by the target fish in the Makassar Strait.


Abstrak


Selat Makassar merupakan kawasan perairan yang memiliki potensi sumberdaya perairan yang cukup besar dan relatif subur. Kawasan Selat Makassar merepresentasikan zona pertemuan antara populasi ikan Samudera Pasifik dan Samudera Hindia. Kesuburan perairannya menjadikan daerah ini sebagai salah satu zona berkembang biak bagi sebagian besar biota perairan. Penelitian ini bertujuan untuk memetakan hasil tangkapan ikan pelagis kecil dengan kondisi perairan di Selat Makassar. Data yang digunakan dalam penelitian ini merupakan data tangkapan ikan dari Perairan Selat Makassar pada bulan Juni-September 2021. Data kondisi lingkungan perairan berupa Suhu Permukaan Laut dan konsentrasi klorofil-a perairan pada periode penelitian diperoleh dari satelit AQUA dengan sensor MODIS, kemudian dikombinasikan dengan Sistem Informasi Geografis. Hasil penelitian ini menunjukkan bahwa kisaran suhu permukaan laut di Perairan Selat Makassar antara 26,7°C–31,3°C dan konsentrasi klorofil-a antara 0,7 mg/m³ - 1,30 mg/m³. Titik tangkapan tertinggi terdapat pada dua titik dengan hasil tangkapan pukat cincin yang sama yaitu 4000 kg pada 118°51’BT dan 5°10’59”LS serta pada titik 118°52’59”BT dan 5°3’LS, sedangkan tangkapan terendah sebanyak 5 kg pada titik 118°19’BT dan 4°57’LS. Disimpulkan bahwa keberadaan ikan kemungkinan dipengaruhi oleh kondisi perairan yang disukai ikan target tangkapan di Selat Makassar.

Keywords:
chlorophyll; satellite data; small pelagic; temperature;

Downloads article

Download data is not yet available.

Article Details

References

Bell JD, Ganachaud A, Gehrke PC, Griffiths SP, Hodbay AJ, Hoegh-Guldberg O, Johnson JE, Borgne RL, Lehodey P, Lough JM, Matear RJ, Pickering TD, Pratchett MS, Gupta AS, Senina I, & Waycott M. 2013. Mixed responses of tropical pasific fisheries and aquaculture to climate change. Nature Climate Change, 3(6): 591-599.


Bell JD, Kronen M, Vunisea A, Nash W, Keeble G, Demmke A, Pontifex S, & Andrefouet S. 2009. Planning the use of fish for food security in the Pasific. Marine Policy 33(1): 64-76.


Chen IC, Lee PF, & Tzeng WN. 2005. Distribution of albacore (Thunnus alalunga) in the Indian Ocean and its relation to environmental factors. Fisheries Oceanography, 14(1): 71–80.


Cinner JE, McClanahan TR, Graham NAJ, Daw TM, Maina J, Stead SM, Wamukota A, Brown K, & Bodin O. 2012. Vulnerability of coastal communities to key impacts of climate change on coral reef fisheries. Global Environmental Change, 22(1): 12-20.


DKP (Dinas Kelautan dan Perikanan) Provinsi Sulawesi Selatan. 2021. Data Statistik Perikanan Provinsi Sulawesi Selatan. Makassar, Sulawesi Selatan.


ETOPO. 2021. Dimuat dalam https://www.ngdc.noaa.gov/mgg/global/.


Fraile I, Murua H, Goni N, & Caballero A. 2010. Effect of environmental factors catch rates of FAD-associated yellowfin (Thunnus albacares) and skipjack (Katsuwonus pelamis) tunas in the Western Indian Ocean. Indian Ocean Tuna Commission Proceedings, 22. IOTC-2010-WPTT-46.


Gordon A. 2005. The oceanography of the Indonesian Seas and their throughflow. Oceanography, 18(4): 14-27.


Hidayat R, Zainuddin M, Mallawa A, Mustapha MA, Safruddin, & Putri ARS. 2020. Estimating potential fishing zones for skipjack tuna (Katsuwonus pelamis) abundance in southern Makassar Strait. IOP Conference Series : Earth and Environmental Science. 564(1): 012082.


Houk P, Rhodes K, Lindfield S, Fread V, & Mcilwain JL. 2012. Commercial coral-reef fisheries across Micronesia: a need for improving management. Coral Reefs, 31(1): 13-26


Kasmi M, Hadi S & Kantun W. 2017. Biologi reproduksi ikan kembung lelaki, Rastreliger kanagurta (Cuvier, 1816) di perairan pesisir Takalar, Sulawesi Selatan. Jurnal Iktiologi Indonesia, 17(3): 259-271.


Kurota H, Cody SS, & Momoko I. 2020. Drivers of rescruitment dynamic in Japanese major fisheries resources: Effect of environmental conditions and spawner abundance. Fisheries Research, 221(1): 105353.


Lan KW, Shimada T, Lee MA, Su NJ, & Chang Y. 2017. Using remote-sensing environmental and fishery data to map potential yellowfin tuna habitats in the tropical Pasific Ocean. Remote Sensing., 9(5): 1-14.


Nataniel A, Jon L, & Maria S. 2021. Modelling seasonal environmental preferences of tropical tuna purse seine fisheries in the Mozambique Channel. Fisheries Research, 243(6): 106073.


Nelwan A, Sondita F, Monintja DR, & D Simbolon. 2017. Analisis upaya penangkapan ikan pelagis kecil di Selat Makassar, Perairan Pantai Barat Sulawesi Selatan. Jurnal Teknologi Perikanan dan Kelautan, 10(1): 1-14.


Nurdin S, Mustapha MA, Lihan T & Zainuddin M. 2017. Applicability of remote sensing oceanographic data in the detection of potential fishing grounds of

Rastrelliger kanagurta in the archipelagic waters of Spermonde, Indonesia. Fisheries Research, 196: 1–12.


Nybakken JW. 1992. Biologi Laut: Suatu Pendekatan Ekologis. Diterjemahkan oleh M. Eidman, H. PT.Gramedia. Jakarta. 459 p.


Oktari AR, Ridwan M, Zainuddin M & Musbir. 2019. Pemataan pola pergerakan penangkapan ikan cakalang (Katsuwonus pelamis) dengan menggunakan data satelit dan purse seine di Selat Makassar selama Juli-Oktober 2018. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 6(12) : 175-185.


Pauly D, Zeller D, Centre F, 2003. Rationale for improving FAO’s database, Page 1 PART I: FISHERIES TRENDS The Global Fisheries Crisis as a Rationale for Improving the FAO’s Database of Fisheries Statistics 1.


Putri RS, Bibin M, Putri ARS & Asrifan A. 2020. GAM in modeling the distribution of small pelagic fish in the Makassar Strait. Veterinary Practitioner, 2(2): 310-314.


Putri RS, Surainti, Hasrianti, Bibin M, Damis & Muhammad F. 2021. Distribusi pelagis kecil di Selat Makassar kaitannya dengan parameter oseanografi. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 8(2): 48-57.


Rasyid AJ, Nurjannah N, A Iqbal B, & M Hatta. 2014. Karakter oseanografi perairan Makassar terkait zona potensial penangkapan ikan pelagis kecil pada musim timur. Jurnal IPTEKS Pemanfaatan Sumberdaya Perikanan, 1(1): 69-80.


Sihombing RF, Aryawati R & Hartoni. 2013. Kandungan klorofil-a fitoplankton di sekitar perairan Desa Sunsang Kabupaten Banyuasin Provinsi Sumatera Selatan. Maspari Journal, 5(1): 34-39.


Song L, Zhou Y, Nishida T, Jiang W, & Wang J. 2009. Envronmental preferences of bigeye tuna, Thunnus obesus, in the Indian Ocean: an application to a longline fishery. Environmental Biology of Fishes, 85(2): 153-171.


Takahashi M, Watanabe Y, Yatsu A, & Nishida H. 2009. Contrasting responses in larva and juvenile growth to a climate-ocean regime shift between anchovy and sardine. Canadian Journal of Fisheries and Aquatic Sciences, 66(6): 972-982.


Worm B, Hilborn R, Baum JK, Branch TA, Collie JS, Costello C, Fogarty MJ, Fulton EA, Hutchings JA, Jennings S, Jensen OP, Lotze HK, Mace PM, McClanahan TR,

Minto C, Palumbi SR, Parma AM, Ricard D, Rosenberg AA, Watson R, & Zeller D, 2009. Rebuilding global fisheries. Science, 325(5940): 578–585.


Yatsu A. 2011. Recent stock status of mogratory commercial species around Japan: possibility of a new alternation of dominant species. Aquabiology, 192(33): 3-6.


Yuniarta S, Van Zwieten PAM, Groeneveld RA, Wisudo SH, & van Ierland EC. 2017. Uncertainty in cacth and effort data of small and medium scale tuna

fisheries in Indonesia: Sources, operational causes and magnitude. Fisheries Research, 193: 173-183.


Zainuddin M, Nelwan A, Farhum SA, Najamuddin H, Kurnia MAI, & Sudirman. 2013. Characterizing potential fishing zone of skipjack tuna during the southeast monsoon in the Bone Bay-Flores Sea using remotely sensed oceanographic data. International Journal of Geosciences, 4(1): 259-266.


Zainuddin M, Saitoh K, & Saitoh S. 2004. Detection of potential fishing ground foralbacore tuna using synoptic measurements of ocean color and thermal remotesensing in the northwestern North Pacific. Geophysical Research Letters, 31(20): 1-4.


Zeller D, Booth S, Pauly D, & Zeller D. 2006. Fisheries contributions to the gross domestic product: underestimating small-scale fisheries in the Pasific. Marine Resource Economics, 21(4): 355-374.


Zorica B, Vilibic I, Kec VI, & Epic J. 2013. Environmental conditions conducive to anchovy (Engraulis encrasicolus) spawning in the Adriatic Sea. Fisheries Oceanography, 22(1): 32–40.