OPEN ACCESS PEER-REVIEWED | RESEARCH ARTICLE

Main Article Content

Authors

Ita Apriani
Mia Setiawati
Tatag Budiardi
Widanarni Widanarni

Abstract

Intensive aquaculture system decreases water quality through the increment of metabolic waste products such as organic nitrogen. The biofloc technology is an alternative solution to avoid the impact of high nutrients disposal in aquaculture production system. This study aimed to evaluate the impacts of biofloc technology using different carbon sources on the production performance of juvenile striped catfish, Pangasianodon hypophthalmus. Completely randomized design with 4 treatments (3 replications) was used in this research i.e.: (A) molasses carbon source, (B) tapioca carbon source, (C) wheat carbon source, and (D) without additional carbon. The juveniles length 2.26±0.12 cm, initial average body weight 0.17±0.05 g were reared for 30 days. Twelve glass tanks (60 cm x 30 cm x 40 cm) filled with 36 L freshwater were used as the experimental culture units. The fish were fed three times daily with a commercial feed containing 27% of crude protein. External organic carbon was added daily two hours after feeding at C/N 15 estimated ratio. The observed parameters i.e.: floc profile, the nutritional content of biofloc, water quality, survival rate, final body length, daily growth rate, feed conversion ratio, protein retention, and lipid retention. The best results showed by molasses treatment, the highest fish survival rate (97.41±0.16 %), longest standard length (2.84±0.1 cm) and decreased feed conversion ratio (0.36±0.04).


Abstrak


Sistem budi daya intensif menurunkan kualitas air melalui peningkatan produk sisa metabolisme seperti nitrogen or-ganik. Penerapan teknologi bioflok adalah solusi alternatif untuk menghindari dampak buruk pembuangan nutrisi tinggi dalam sistem produksi akuakultur. Penelitian ini bertujuan untuk mengevaluasi pengaruh teknologi bioflok yang menggunakan sumber karbon berbeda pada kinerja produksi yuwana ikan patin (Pangasianodon hypophthal-mus). Rancangan penelitian yang digunakan adalah rancangan acak lengkap dengan empat perlakuan (tiga kali ulang-an) yaitu: (A) sumber karbon molase, (B) sumber karbon terigu, (C) sumber karbon tapioka, dan (D) tanpa penam-bahan karbon. Yuwana ikan patin berukuran panjang awal 2,26±0,12 cm ekor-1 dan bobot rata-rata awal 0,17±0,05 g ekor-1 dipelihara selama 30 hari. Dua belas akuarium (60 cm x 30 cm x 40 cm) diisi dengan air 36 L digunakan seba-gai unit percobaan budi daya. Ikan diberi makan tiga kali sehari dengan pakan komersial mengandung protein 27%. Penambahan karbon dilakukan setiap hari 2 jam setelah makan dengan estimasi rasio C/N 15. Parameter pengamatan meliputi: profil flok, kandungan nutrisi tepung flok, kualitas air, kelangsungan hidup, pertumbuhan panjang baku, la-ju pertumbuhan harian, rasio konversi pakan, retensi protein, dan retensi lemak. Perlakuan dengan penambahan sumber karbon molase menunjukkan kelangsungan hidup tertinggi (97,41±0,16 %), pertumbuhan panjang baku (2,84±0,1 cm), dan menurunkan rasio konversi pakan (0,36±0,04).

Keywords:
biofloc; molasses; tapioca; wheat;

Downloads article

Download data is not yet available.

Article Details

References

Aji SB, Sudaryono A, Herwanto D. 2014. Pengaruh penambahan sumber karbon or-ganik berbeda terhadap pertumbuhan dan rasio konversi pakan benih lele (Clarias sp.) dalam media bioflok. Journal of Aquaculture Management and Technology, 3(4): 199-206.

Greenberg AE, Clesceri LS, Eaton AD, Franson MAH. 1992. Standard Methods for the Examination of theWater and Wastewater. 18th Edition. American Public Health Association (APHA), Washington.

Andriyanto S, Listyanto N, Rahmawati R. 2010. Pengaruh pemberian probiotik dengan dosis yang berbeda terhadap sintasan dan pertumbuhan benih ikan patin jambal (Pangasius djambal). In:Sudrajat A (editor). Prosiding Forum Inovasi teknologi Akuakultur. Pusat Penelitian dan Pengembangan Perikanan Budidaya, Badan Penelitian dan Pengembangan Kela-utan dan Perikanan. pp. 117-122

Association of Official Analytical Chemists [AOAC]. 1990. Official methods of Analysis. In: Horwitz W. Ed. Association of Official Analytical Chemists, Washington, AOAC International.

Avnimelech Y. 1999. Carbon nitrogen ratio as a control element in aquaculture systems. Aquaculture, 176(3-4): 227-235.

Avnimelech Y. 2007. Feeding with microbial flocs by tilapia in minimal discharge bio-flocs technology ponds. Aquaculture, 264(1-4): 140-147.

Avnimelech Y, Kochva MM, Mokady S. 1994. Development of controlled intensive aquaculture system with a limited water exchange and adjusted carbon to nitrogen Ratio. Bamidgeh, 46(4): 119-131.

Azim ME, Little DC. 2008. The biofloc technology (BFT) in indoor tanks: Water quality, biofloc composition, and growth and welfare of Nile tilapia (Oreochromis niloticus). Aquaculture 283(1-4): 29-35.

Bakar NSA, Nasir NM, Lananan F, Hamid SHA, Lam SS, Jusoh A. 2015. Optimization of C/N ratios for nutrient removal in aquaculture system culturing African catfish, (Clarias gariepinus) utilizing bioflocs technology. International Biodeterioration & Biodegradation, 102: 100106.

Beristain TB. 2005. Organic Matter Decomposition in Simulated Aquaculture Ponds. Wageningen Institute of Animal Sciences. Netherlands. 138 p.

Bosma RH, Verdegem MCJ. 2011. Sustainable aquaculture in ponds: Principles, practices and limits. Livestock Science 139(1-2): 58-68.

Chamberlain G, Avnimelech Y, Mcintosh RP, Velasco M. 2001. Advantages of aerated microbial reuse system with balanced C:N. In: Advocate, Feed Utilization. Global Aquaculture Alliance, USA, 5356 p.

Crab R, Avnimelech Y, defoirdt T, Bossier P, Verstraete W. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture, 270(1-4): 1-14.

Crab R, Defoirdt T, Bossier P, Verstraete W. 2012. Biofloc technology in aquaculture: Beneficial effects and future challenges. Aquaculture, 356-357: 351-356.

De Schryver P, Crab R, Defroidt T, Boon N, Verstreate. 2008. The basics of bio-flocs technology: The added value for aquaculture. Aquaculture, 277(3-4): 125-137.

Effendi MI. 1979. Metode Biologi Perikanan. Yayasan Dewi Sri. Bogor. 112 p.

Ekasari J. 2009. Teknologi bioflok: Teori dan aplikasi dalam perikanan budi daya sis-tem intensif. Jurnal Akuakultur Indonesia, 8(2): 117-126.

Ekasari J, Angela A, Waluyo SH, Bachtiar T, Surawidjaja EH, Bossier P, De Schryver P. 2014a. The size of biofloc determines the nutritional composition and the nitrogen recovery by aquaculture animals. Aquaculture, 426-427: 105-111.

Ekasari J, Azhar MH, Surawidjaja EH, Nuryati S, De Schryver P, Bossier P. 2014b. Immune response and disease resistance of shrimp fed biofloc grown on different carbon sources. Fish & Shellfish Immunology, 41(2): 332-339.

Ekasari J, Crab R, Verstaete W. 2010. Primary nutritional content of bioflocs cultured with different organic carbon sources and salinity. Hayati Journal of Biosciences, 17(3): 125-130.

Ekasari J, Rivandi DR, Firdausi AP, Surawidjaja EH, Junior MZ, Bossier P, De Schryver P. 2015. Biofloc technology positively affects Nile tilapia (Oreochromis nilo-ticus) larvae performance. Aquaculture, 441: 72-77.

Goddard S. 1996. Feed Management in Intensive Aquaculture. Chapman and Hall. New York, 194 p.

Gunarto, Muliani, Mansyur A. 2010. Pengaruh aplikasi sumber c-karbohidrat (tepung tapioka) dan fermentasi probiotik pada bu-di daya udang windu Penaeus monodon pola intensif di tambak. Jurnal Riset Akuakultur, 5(3): 393-409.

Hostins B, Braga A, Lopes DLA, Wasielesky W, Poersch LH. 2015. Effect of temperature on nursery and compensatory growth of pink shrimp Farfantepenaeus brasiliensis reared in a super-intensive biofloc system. Aquaculture Engineering, 66: 62-67.

Huisman EA. 1987. The Principles of Fish Culture Production. Department of Aquaculture, Wageningen University, The Netherlands, 100 p.

Liu L, Hu Z, Dai X, Avnimelech Y. 2014. Effects of addition of maize starch on the yield, water quality and formation of bio-flocs in an integrated shrimp culture system. Aquaculture, 418-419: 79-86.

Long L, Yang J, Li Y, Guan C, Wu F. 2015. Effect of biofloc technology on growth, digestive enzyme activity, hematology, and immune response of genetically improved farmed tilapia (Oreochromis niloticus). Aquaculture, 448: 135-141.

Lorenzo MAD, Schveitzer R, Santo CMDE, Candia EWS, Mourino JLP, Legarda EC, Seiffert WQ, Vieira FDN. 2015. Intensive hatchery performance of the Pacific white shrimp in biofloc system. Aquaculture Engineering, 67: 53-58.

Megahed ME. 2010. The effect of microbial biofloc on water quality, survival and growth of the green tiger shrimp (Pena-eus semisulcatus) fed with different crude protein levels. Jounal of the Arabian Aquaculture Society, 5(2): 119-142.

Michaud L, Blancheton J, Brum V, Piedrahita R. 2006. Effect of particulate organik carbon on heterotrophic bacterial populations and nitrification efficiency in biological filters. Aquaculture engineering, 34(3): 224-233.

Minggawati I, Saptono. 2012. Parameter kualitas air untuk budi daya ikan patin (Pa-ngasius pangasius) di karamba sungai Kahayan, kota Palangka Raya. Jurnal Ilmu Hewan Tropika, 1(1) : 27-30.

Ogello E, Musa S, Aura C, Abwao J, Munguti J. 2014. An appraisal of the feasibility of tilapia production in ponds using biofloc technology: A review. International Journal of Aquatic Science, 1(5): 21-39.

Purnomo PD. 2012. Pengaruh penambahan kar-bohidrat pada media pemeliharaan terha-dap produksi budi daya intensif nila (Oreochromis niloticus). Journal of Aquaculture Management and Technology, 1(1): 161-179.

Rangka NA, Gunarto. 2012 Pengaruh penum-buhan bioflok pada budi daya udang va-name pola intensif di tambak. Jurnal Ilmiah Perikanan dan Kelautan, 4(2): 141-149.

Ray AJ, Lotz JM. 2014. Comparing a chemo-autotrophic-based biofloc system and threeheterotrophic-based systems receiving different carbohydrate sources. Aquaculture Engineering, 63: 54-61.

Riani H, Rostika R, Lili W. 2012. Efek pengu-rangan pakan terhadap pertumbuhan udang vaname (Litopenaeus vannamei) PL-21 yang diberi bioflok. Jurnal Perikanan dan Kelautan, 3(3): 207-211

Rita R, Walim L. 2012. Prevention of Vibrio harveyi infection at the fresh water shrimp (Macrobrachium rosenbergii) use of bioflocks aggregation. Seria Zootehnie, 58(3): 251-253.

Slembrouck J, Baras E, Subagja J, Hung LT, Legendre M. 2009. Survival, growth and food conversion of cultured larvae of Pangasianodon hypophthalmus, depending on feeding level, prey density and fish density. Aquaculture, 294(1-2): 52-59.

Standar Nasional Indonesia [SNI]. 2009. Pr-duksi benih ikan patin Siam (Pangasius hypopthalmus) kelas benih sebar. Badan Standar Nasional. Republik Indonesia.

Steel RGD, Torrie JH. 1980. Principle and Procedures of Statistics: A Biometrical Approach. Second Edition. CRC Press. Boca Raton. Florida. 672 p.

Suastuti M. 1998. Pemanfaatan hasil samping industri pertanian molase dan limbah cair tahu sebagai sumber karbon dan nitrogen untuk produki biosurfaktan oleh Bacillus sp. galur komersil dan lokal. Tesis. Program Pascasarjana Institut Pertanian Bo-gor. 103 hlm.

Takeuchi T. 1988. Laboratory work chemical evaluation of dietary nutrient. In: Watanabe T (editor). Fish Nutrition andMariculture. Tokyo. JICA Kanagawa International Fisheries Training Centre. 79-92 p.

Thammapat P, Raviyan P, Siriamornpun S. 2010. Proximate and fatty acids composition of the muscles and viscera of Asian catfish (Pangasius bocourti). Food Chemistry, 122(1): 223-227.

Xu WJ, Pan LQ. 2012. Effects of bioflocs on growth performance, digestive enzyme activity and body composition of juvenile Litopenaeus vannamei in zero-water exchange tanks manipulating C/N ratio in feed. Aquaculture 356-357: 147-152.

Xu WJ, Pan LQ. 2014. Evaluation of dietary protein level on selected praameters of immune and antioxidant systems, and growth performance of juvenile Litope-naeus vannamei reared in zero-water exchange biofloc-based culture tanks. Aquaculture, 426-427: 181-188.

Xu WJ, Qing Pan L, Zhao HD, Huang J. 2012. Preliminary investigation into the contribution of bioflocs on protein nutrition of Litopenaeus vannamei fed with different dietary protein levels in zero-water exchange culture tanks. Aquaculture 350353: 147-153.

Zonneveld N, Huisman EA, Boon JH. 1991. Prinsip-prinsip Budidaya Ikan. Gramedia Pustaka Utama. Jakarta. 318 hlm.