OPEN ACCESS PEER-REVIEWED | RESEARCH ARTICLE

Main Article Content

Authors

Suci Antoro
nFN Alimuddin
Muhammad Agus Suprayudi
Irvan Faizal
Muhammad Zairin Junior

Abstract

The objective of this study was to compare the growth response of 3 different sizes of humpback grouper juveniles, which were come from the same brood stock group and spawning season after “stop and go” experiment of recombinant Epinephelus lanceolatus growth hormone (rElGH); that are with, without and retreated with rElGH for 42 days respectively. Each size group was divided into two treatment groups. The first group was treated with 50 mg crude rElGH kg-1 in commercial diet (pC) and a second group as a control. Weight gain of pC compares to control for small size group, medium size group and large size groups of juveniles subsequently for first stage were 85.89%, 39.66% and 16.34%; second stage were -34.57%, -14.76%, and -5.27%; and third stage were 56.16%, 50.24% and 59.14%. Specific growth rate differences of small, medium and large size of pC compared to control in first stage were 41.6%, 19.06% and 7.52%; second stage were -44.81%, -27.23% and -14.66%; and third stage were 55.9%, 40.62% and 48.42%. No significant difference of condition factor among all sizes of pC and control fish. Protein content and retention, and liver glycogen content from pooled sample of all size fish groups pC treatment in the second stage were decreasing compared to the first stage, respectively, 11.49%, 35.14% and 84.73%. It can be concluded that rElGH treatment improved growth performance of all size fish groups, however small juveniles have highest growth response compared to medium and large juvenile groups. The ceasing of rElGH treatment on second experiment stage is most likely causing the loss of accelerating growth factor then decreasing growth performance, protein content and retention, and liver glycogen content. AbstrakPenelitian bertujuan membandingkan respons pertumbuhan tiga kelompok ukuran benih ikan kerapu bebek dari kelompok induk dan periode pemijahan yang sama terhadap hormon pertumbuhan rekombinan ikan kerapu kertang Epine-phelus lanceolatus (rElGH); melalui eksperimen “putus dan sambung” yaitu dengan, tanpa, dan perlakuan kembali rElGH masing-masing selama 42 hari. Setiap kelompok ukuran dibagi menjadi dua kelompok perlakuan, kelompok pertama diberi perlakuan rElGH dengan dosis 50 mg rElGH-HP55 kg-1 pakan (pC) sedangkan kelompok kedua sebagai kontrol. Pertambahan bobot badan kelompok pC dibandingkan dengan kontrol pada benih berukuran kecil, sedang dan besar berturut-turut pada eksperimen tahap pertama 85,89%, 39,66% dan 16,34%; tahap kedua -34,57%, -14,76%, dan -5,27%, dan tahap ketiga 56,16%, 50,24% dan 59,14%. Perbedaan laju pertumbuhan spesifik benih berukuran kecil, se-dang dan besar perlakuan pC terhadap kontrol pada eksperimen tahap pertama 41,6%, 19,06% dan 7,52%; tahap kedua -44,81%, -27,23% dan -14,66%; dan tahap ketiga 55,9%, 40,62% dan 48,42%. Faktor kondisi pC dan kontrol pada se-mua kelompok ukuran tidak berbeda nyata. Kandungan dan retensi protein, dan kandungan glikogen hati gabungan sampel dari semua kelompok ukuran ikan perlakuan pC pada eksperimen tahap kedua menurun dibandingkan eksperi-men tahap pertama, masing-masing sebesar 11,49%, 35,14% dan 84,73%. Dapat disimpulkan pemberian rElGH mema-cu pertumbuhan semua kelompok ukuran benih ikan, namun benih berukuran kecil mempunyai respons pertumbuhan lebih tinggi daripada kelompok benih berukuran sedang dan besar. Penghentian pemberian rElGH menyebabkan ber-hentinya faktor pemacu pertumbuhan, sehingga performa pertumbuhan, kandungan dan retensi protein, dan kandungan glikogen hati menurun.

Keywords:
condition factor , different sizes , growth , liver glycogen , protein retention , recombinant growth hormone.

Downloads article

Download data is not yet available.

Article Details

Copyright
   

Copyright (c) 2017 Jurnal Iktiologi Indonesia

  Authors who publish with this journal agree to the following terms:  
  a.)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.  
  b.) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.  
  c.) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).  
       
  Creative Commons License
Jurnal Iktiologi Indonesia by Masyarakat Iktiologi Indonesia (MII) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at https://jurnal-iktiologi.org
 

 

References

Afero F, Miao S, Perez AA. 2010. Economic analysis of tiger grouper Epinephelus fuscoguttatus and humpback grouper Cromi-leptes altivelis commercial cage culture in Indonesia. Aquaculture International, 18(5): 725-739.

Alimuddin, Lesmana I, Sudrajat AO, Carman O, Faizal I. 2010. Production and bioactivity potential of three recombinant growth hormones of farmed fish. Indonesian Aquaculture Journal, 5 (1): 11-16.

Antoro S, Junior MZ, Alimuddin, Suprayudi MA, Faizal I. 2014. Growth, muscle composition, innate immunity and histological performance of the juvenile humpback grouper (Cromileptes altivelis) after treatment with recombinant fish growth hormone. Aquaculture Research,. (in press).

AOAC. 1995. Official Methods of Analysis, 16th ed. AOAC International, Arlington, VA., USA.

Bin X, Kang-sen M, Ying-li X, Hong-zhii M, Zhen-hui L, Yong D, Shan L, Rao W, Pei-jun Z. 2001. Growth promotion of red sea-bream Pagrosomus mayor by oral administration of recombinant eel and salmon growth hormone. Chinese Journal of Oceanology and Limnology, 19(2): 141-146.

Bolander FF. 2004. Molecular Endocrinology, 3rd ed. Elsevier Academic Press. London, 617 p

Cowan FJ, Evans WD, Gregory JW. 1999. Metabolic effects of discontinuing growth hormone treatment. Archives of Disease in Childhood, 80(6): 517-523.

Devlin R, Biagi CA, Yesaki TY. 2004. Growth, viability and genetic characteristics of GH transgenic coho salmon strains. Aquaculture, 236 (1-4): 607-632.

Elliot JM, Hurley MA. 1995. The functional relationship between body size and growth rate in fish. Functional Ecology, 9(4): 625-627

Funkenstein B, Dyman A, Lapidot Z, de Jesus-Ayson EG, Gertler A, Ayson FG. 2005. Expression and purification of a biologically active recombinant rabbitfish (Siganus guttatus) growth hormone. Aquaculture, 250 (1-2): 504-515.

Handoyo B, Alimuddin, Utomo NBP. 2012. Pertumbuhan, konversi dan retensi pakan, dan proksimat tubuh benih ikan sidat yang diberi hormon pertumbuhan rekombinan ikan kerapu kertang melalui perendaman. Jurnal Akuakultur Indonesia, 11(2): 132140.

Harris J, Bird DJ. 2000. Modulation of the fish immune system by hormones. Veterinary Immunology and Immunopatology, 77(3-4): 163-176

Hertz Y, Tachelet A, Madar Z, Gertler A. 1991. Absorption of bioactive human growth hormone after oral administration in the common carp and its enhancement by deoxycholate. Journal of Comparative Physiology B, 161(2):159-163.

Irmawati, Alimuddin, Junior MZ, Suprayudi MA, Wahyudi AT. 2012. Peningkatan laju pertumbuhan benih ikan gurame (Osphronemus goramy Lac) yang direndam dalam air yang mengandung hormon pertumbuhan ikan mas. Jurnal Iktiologi Indonesia, 12(1): 13-23.

Le Bail P-Y, Perez-Sanchez J, Yao K, Maisse G. 1993. Effect of GH treatment on salmonid growth. Study of the variability of response. In: Lahlou B, Vitiello P (eds). Aquaculture: Fundamental and Applied research. Wahington American Geophysical Union. pp. 173-197

Liu Z Zh, Xu YL, Xu DW, Zhang PJ. 1999. Effects of exogenous growth hormone on muscle composition of flounder (Paralichys olivaceus). Marine Scence, 5: 51-53 (dalam bahasa China dengan abstrak berbahasa Inggris).

Liu S, Zang X, Liu B, Zhang X, Arunakumara KKIU, Zhang X, Liang B. 2007. Effect of growth hormone transgenic Synechocystis on growth, feed efficiency, muscle composition, haematology and histology of turbot (Scophthalmus maximus L.). Aquaculture Research, 38(12): 1283-1292.

Liu S, Zhang X, Zang X, Liu B, Arunakumara KKIU, Xu D, Zhang X. 2008. Growth, feed efficiency, body muscle composition, and histology of flounder (Paralichthys olivaceus) fed GH transgenic Synechocystis. Aquaculture, 277(1-2): 78-82.

Moriyama S, Yamamoto H, Sugimoto S, Abe T, Hirano T, Kawauchi H. 1993. Oral administration of recombinant salmon growth hormone to rainbow trout, Oncorhynchus mykiss. Aquaculture, 112(1): 99-106.

Moriyama S, Kawauchi H. 2001. Growth regulation by growth hormone and insulin-like growth factor-I in teleosts. Otsuchi Marine Science, 26: 23-27.

[NRC] National Research Council. 1977. Nutrition Requirement of Warm Water Fishes. National Academic Press, Washington DC. 124 p

Pauly D. 1983. Some simple methods for the assessment of tropical fish stocks. FAO Fisheries Technical Paper, No.234, 52 p.

Pilay TVR, Kutty MN. 2005. Aquaculture, Principles and Practices. 2nd edition. Blackwell Publications, Oxford. 624 p

Pottinger TG, Rand-Weaver M, Sumpter JP. 2003. Overwinter fasting and refeeding in rainbow trout: plasma growth hormone and cortisol levels in relation to energy mobilization. Comparative Biochemistry and Physiology Part B, 136(3): 403-417.

Prodam F, Savastio S, Genoni G, Babu D, Giordano M, Ricotti R, Aimaretti G, Bona G, Bellone S. 2014. Effects of growth hormone (GH) therapy withdrawal on glucose metabolism in not confirmed GH deficient adolescents at final height. PLoS ONE 9(1): e87157.

Promdonkoy B, Warit S, Panyim S. 2004. Production of a biologically active growth hormone from giant catfish (Pangasianodon gigas) in Escherichia coli. Biotechnology Letters, 26(8): 649-653.

Raven PA, Sakhrani D, Beckman B, Neregard L, Sundstrom LF, Bjornsson B Th, Devlin RH. 2012. Growth and endocrine effects of recombinant bovine growth hormone treatment in non-transgenic and growth hormone transgenic coho salmon. General and Comparative Endocrinology, 177(1): 143-152.

Reinecke M, Bjornsson BT, Dickhoff WW, McCormick SD, Navarro I, Power DM, Gutierrez J. 2005. Growth hormone and insulin-like growth factors in fish: Where we are and where to go. General and Comparative Endocrinology, 142(1): 20-24.

Ricker WE. 1979. Growth rate and models. In: Hoar WS, Randall DJ, Brett JR (eds.) Fish Physiology Vol. VIII. Academic Press, New York. pp 678-744.

Sekine S, Mizukami T, Nishi T, Kuwana Y, Saito A, Sato M, Itoh S, Kawauchi H. 1985. Cloning and expression of cDNA for salmon growth hormone in Escherichia coli. Proceeding of National Academic Sicences, 82: 4306-4310.

Silverstein JT, Wolters WR, Shimizu M, Dick-hoff WW. 2000. Bovine growth hormone treatment of channel catfish: strain and temperature effects on growth, plasma IGF-I levels, feed intake efficiency and body composition. Aquaculture, 190(1-2): 77-88.

Subaidah S, Carman O, Sumantadinata K, Su-kenda, Alimuddin. 2012. Respons pertumbuhan dan ekspresi gen udang vaname Litopenaeus vannamei setelah direndam dalam larutan hormon pertumbuhan rekombinan ikan kerapu kertang. Jurnal Riset Akuakultur, 7(3): 337-352

Tsai HJ, Hsih MH, Kuo JC. 1997. Escherichia coli-produced fish growth hormone as a feed additive to enhance the growth of juvenile black seabream (Acanthopagrus schlegeli). Journal of Applied Ichthyology, 13(2): 79-82.

Vijayakumar A, Novosyadlyy R, Wu YJ, Yakar S, LeRoith D. 2010. Biological effects of growth hormone on carbohydrate and lipid metabolism. Growth Hormone and IGF Research, 20(1): 1-14

Watanabe T. 1988. Fish Nutrition and Mariculture. JICA Textbook the General Aquaculture Course, Tokyo. 233 p.