OPEN ACCESS PEER-REVIEWED | RESEARCH ARTICLE

Main Article Content

Authors

Ismail Rahmat
Dedi Jusadi
Mia Setiawati
Ichsan Ahmad Fauzi

Abstract

A triplicate experiment was conducted to evaluate the effect of the diet supplemented with free glutamine (Gln) on intestinal structure and function, as well as the growth performance of African catfish Clarias gariepinus juvenile. The commercial feed was supplemented with Gln of either 0% (control), 0.7%, 1.4% or 2.1%. Fish measuring 2 ± 0.02 cm were stocked in 12 aquariums 50x40x35 cm filled with water at a volume of 50 L with a density of 2,000 fish m-2. Fish were cultured for 30 days and fed on the diets three times a day at satiation. Results showed that the growth rate and biomass of the fish at the end of the experiment had a quadratic response, with the maximum growth achieved at 0.7% Gln treatment. The response pattern of fish growth was in line with the distribution of fish length. Fish in 0.7% Gln treatment had number fish measuring 5-6 cm more than 12% less than other treatments, while fish measuring 7-8 cm were more than other treatments. Higher growth in the 0.7% Gln treatment correlated with longer villi, higher protein retention, and ultimately higher feed efficiency. Increased intake of Gln in the diet also caused an increase in intestinal protease enzyme activity, and accumulation of Gln in the liver, but did not increase the enzymes activity of the liver Superoxidase Dismutase (SOD). It can be concluded that feeding on a diet supplemented with 0.7% Gln can improve the structure and function of the intestine, as well as increase the target size of catfish juvenile production.

Keywords:
catfish , enzyme , glutamine , growth , intestine

Downloads article

Download data is not yet available.

Article Details

Copyright
   

Copyright (c) 2021 Jurnal Iktiologi Indonesia

  Authors who publish with this journal agree to the following terms:  
  a.)
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.  
  b.) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.  
  c.) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).  
       
  Creative Commons License
Jurnal Iktiologi Indonesia by Masyarakat Iktiologi Indonesia (MII) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at https://jurnal-iktiologi.org
 

 

References

AOAC. 1999. Official Methods of Analysis of AOAC International, 16th ed. AOAC International. Gaithersburg, Maryland.


Akinwole AO, & Faturoti EO. 2007. Biological performance of African Catfish (Clarias gariepinus) cultured in recirculating system in Ibadan. Aquacultural Engineering. 36(1):  18-23. DOI: 10.1016/j.aquaeng.2006.05.001


Badruzzaman, Tito E, Meri R, Faishal F. 2020. Analisis proses pengujian kinerja mesin fish grading untuk sortir ikan lele kapasitas 5 kg. Industrial Research Workshop and National Seminar, Politeknik Negeri Bandung. 978.979.3541.60


Bradford MM. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilization the principle of protein-dye binding. Analytical Biochemistry, 72 248-254. DOI: 10.1016/0003-2697(76)90527-3


Britz PJ, Hecht T. 1987. Temperature preferences and optimum temperature for growth of African sharptooth catfish (Clarias gariepinus) larvae and postlarvae. Aquaculture. 63(1-4): 205-214. DOI: 10.1016/0044-8486(87)90072-X


Cahu CL, Infante JLZ. 1995. Maturation of the pancreatic and intestinal digestive functions in sea bass (Dicentrarchus labrax): effect of weaning with different protein sources. Fish Physiology and Biochemistry. 14(6): 431–437. DOI: 10.1007/BF00004343


Carey BW, Finley LW, Cross JR, Allis CD, Thompson CB. 2015. Intracellular alphaketoglutarate maintains the pluripotency of embryonic stem cells. Nature. 518(7539): 413-416. DOI: 10.1038/nature13981


Chen J, Zhou XQ, Feng L, Jiang J. 2009. Effects of glutamine on hydrogen peroxide-induced oxidative damage in intestinal epithelial cells of Jian carp (Cyprinus carpio). Aquaculture. 288(3-4): 285-289. DOI: 10.1016/j.aquaculture.2008.10.053


Cheng ZY, Buentello A, Gatlin DM. 2011. Effects of dietary arginine and glutamine on growth performance, immune responses and intestinal structure of red drum, (Sciaenops ocellatus). Aquaculture. 319(1-2): 247–252. DOI: 10.1016/j.aquaculture.2011.06.025


Cheng Z, Gatlin DM, Buentello A. 2012. Dietary supplementation of arginine and/or glutamine influences growth performance, immune responses and intestinal morphology of hybrid striped bass (Morone chrysops×Morone saxatilis). Aquaculture. 362–363: 39–43. DOI: 10.1016/j.aquaculture.2012.07.015


Coutinho F, Castro C, Rufino-Palomares E, Ordóñez-Grande B, Gallardo MA, Oliva-Teles A, Peres H. 2016. Dietary glutamine supplementation effects on amino acid metabolism, intestinal nutrient absorption capacity and antioxidant response of gilthead sea bream (Sparus aurata) juveniles. Comparative Biochemistry and Physiology. 191: 9–17. DOI: 10.1016/j.cbpa.2015.09.012


Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, Corless M, Newsholme P. 2005. Molecular mechanisms of glutamine action. Journal of Cellular Physiology. 204(2): 392-401. DOI: 10.1002/jcp.20339


Cynober L, Moinard C,  De Bandt JP.2010. The 2009 ESPEN Sir David Cuthbertson. Citrulline: a new major signaling molecule or just another player in the pharmaconutrition game?. Clinical Nutrition, 29(5): 545-551. DOI: 10.1016/j.clnu.2010.07.006


Dewi U. 2019. Penambahan glutamin pada pakan untuk meningkatkan kinerja pertumbuhan, struktur dan fungsi usus benih ikan patin (Pangasius hypophthalmus)  [tesis]. Bogor (ID): Institut Pertanian Bogor.


Ding Z, Li W, Huang J, Yi B, Xu Y. 2017. Dietary alanyl-glutamine and vitamin E supplements could considerably promote the expression of GPx and PPARα genes, antioxidation, feed utilization, growth, and improve composition of juvenile cobia. Aquaculture. 470(1): 95–102. DOI: 10.1016/j.aquaculture.2016.12.015


Farhangi M, Carter CG. 2001. Growth, physiological and immunological responses of rainbow trout (Oncorhynchus mykiss) to different dietary inclusion levels of dehulled lupin (Lupinus angustifolius). Aquaculture Research, 32(1): 329–340. DOI: 10.1046/j.1355-557x.2001.00044.x


Febriani D, Sukenda, Nuryati S. 2013. Kappa-karagenan sebagai imunostimulan untuk pengendalian penyakit infectious myonecrosis (IMN) pada udang vaname Litopenaeus vannamei. Jurnal Akuakultur Indonesia.12(1): 70–78.


Finkel T, Holbrook NJ. 2000. Oxidants, oxidative stress and the biology ofageing. Nature, 408(6809): 239-247. DOI: 10.1038/35041687


Garlick PJ. 2001. Assessment of the safety of glutamine and other amino acids. The Journal of Nutrition. 131(9): 2556S–2561S. DOI: 10.1093/jn/131.9.2556s


Han Y, Koshio S, Jiang, Z, Ren T, Ishikawa M, Yokoyama S, Gao J. 2014. Interactive effects of dietary taurine and glutamine on growth performance, blood parameters and oxidative status of Japanese flounder (Paralichthys olivaceus). Aquaculture. 434: 348–354. DOI: 10.1016/j.aquaculture.2014.08.036


Hara TJ. 2006. Feeding behaviour in some teleosts is triggered by single amino acids primarily through olfaction. Journal of Fish Biology, 68(3): 810-825. DOI: 10.1111/j.0022-1112.2006.00967.x


Hong X, Qing Z, Chang-an W, Zhi-gang Z, Ling L, Lian-sheng W, Jin-nan L, Qi-you X. 2014. Effect of dietary alanyl-glutamine supplementation on growth performance, development of intestinal tract, antioxidant status and plasma non-specific immunity of young mirror carp (Cyprinus carpio L.). Journal of Northeast Agricultural University. 21(4): 37–46. DOI: 10.1016/S1006-8104(15)30018-0


Hu K, Zhang JX, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Zhou XQ. 2015. Effect of dietary glutamine on growth performance, non-specific immunity, expression of cytokine genes, phosphorylation of target of rapamycin (TOR), and anti-oxidative system in spleen and head kidney of Jian carp (Cyprinus carpio var. Jian). Fish Physiology and Biochemistry. 41(3): 635–649. DOI: 10.1007/s10695-015-0034-0


Huisman EA. 1987. Principles of fish production. Wagenigen (ND) : Department of Fish Culture and Fisheries, Wageningen Agriculture University. 170 p.


Iji PA, Saki A, Tivey DR. 2001. Body and Intestinal Growth of Broiler Chicks Oncommercial Starter Diet. 1. Intestinal Weight and Mucosal Development. Brit Poultry Sci. 42(4): 505-513. DOI: 10.1080/00071660120073151.


Kehrer JP, Klotz LO. 2015. Free radicals and related reactive species as mediators of injury and disease: implications for health. Critical review in Toxicology. 45(9):765-798. DOI: 10.3109/10408444.2015.1074159


Khojasteh SMB. 2012. The morphology of the post-gastric alimentary canal in teleost fishes: abrief review. International Journal of Aquatic Science. 3(2): 71-88.


Li C, Zhang M, Li M, Zhang Q, Qian Y, Wang R. 2018. Effect of dietary alanyl-glutamine dipeptide against chronic ammonia stress induced hyperammonemia in the juvenile yellow catfish (Pelteobagrus fulvidraco). Comparative Biochemistry and Physiology, Part C. 213: 55–61. DOI: 10.1016/j.cbpc.2018.08.001


Li HT, Jiang WD, Liu Y, Jiang J, Zhang YA, Wu P, Zeng YY, Zhou XQ, Feng L. 2017. Dietary glutamine improves the function of erythrocytes through its metabolites in juvenile carp (Cyprinus carpio var. Jian). Aquaculture. 474: 86–94. DOI: 10.1016/j.aquaculture.2017.03.041


Li P, Mai K, Trushenski J, Wu G. 2009. New developments in fish amino acid nutrition: towards functionaland environmentally oriented aquafeeds. Springer. 37(1): 43-53. DOI: 10.1007/s00726-008-0171-1


Li S, Guo Q, Li S, Zheng H, Chi S, Xu Z, Wang Q. 2019. Glutamine protects against LPS-induced inflammation via adjusted NODs signaling and enhanced immunoglobulins secretion in rainbow trout leukocytes. Developmental and Comparative Immunology. 98: 148–156. DOI: 10.1016/j.dci.2019.05.006


Li X, Zheng S, & Wu G. 2020. Nutrition and metabolism of glutamate and glutamine in fish. Amino acids. 52: 671-691. DOI: 10.1007/s00726-020-02851-2


Liu J, Mai K, Xu W, Zhang Y, Zhou H, Ai Q. 2015. Effects of dietary glutamine on survival, growth performance, activities of digestive enzyme, antioxidant status and hypoxia stress resistance of half-smooth tongue sole (Cynoglossus semilaevis Günther) post larvae. Aquaculture. 446: 48–56. DOI: 10.1016/j.aquaculture.2015.04.012


Luquetti BC, Alarcon MFF, Lunedo R, Campos DMB, Furlan RL, Macari M. 2016. Effects of glutamine on performance and intestinal mucosa morphometry of broiler chickens vaccinated against coccidiosis. Scientia Agricola. 73(4): 322–327. DOI: 10.1590/0103-9016-2015-0114


Murniasih S, Jusadi D, Setiawati M, Nuryati S. 2019. Suplementasi glutamin bebas dalam pakan meningkatkan respons fisiologis dan sintasan ikan botia Chromobotia macracanthus Bleeker, 1852. Jurnal Iktiologi Indonesia 19(3): 437-448. DOI: 10.32491/jii.v19i3.466


Nasir M. 2002. Pengaruh kadar selulosa yang berbeda dalam pakan terhadap panjang usus dan aktivitas enzim pencernaan benih ikan gurami (Osphronemus gouramy Lac.) Tesis. Sekolah Pascasarjana. Institut Pertanian Bogor. Bogor.


Ndubuisi UC, Chimezie AJ, Chinedu UC, Chikwem IC,  Alexander U. 2015. Effect of pH on the growth performance and survival rate of Clarias gariepinus fry. International Journal of Research in Biosciences. 4(3): 14-20.


Olli JJ, Krogdahl Å, van den Ingh TS, & Brattås LE. 1994. Nutritive value of four soybean products in diets for Atlantic salmon (Salmo salar, L.). Acta Agriculturae Scandinavica, 44: 50-60.


Onura CN, Broeck WVde, Nevejan N, Muendo P, Stappen GV. 2018. Growth performance and intestinal morphology of African catfish (Clarias gariepinus Burchell 1822) larvae fed on live and dry feeds. Aquaculture. 17: 70-79. DOI: 10.1016/j.aquaculture.2018.01.046


Pereira RT, Rosa PV, Gatlin DM. 2017. Glutamine and arginine in diets for nile tilapia : Effects on growth, innate immune responses, plasma amino acid profiles and whole-body composition. Aquaculture. 473: 135–144. DOI: 10.1016/j.aquaculture.2017.01.033


Pohlenz C, Buentello A, Bakke AM, Gatlin DM. 2012. Free dietary glutamine improves intestinal morphology and increases enterocyte migration rates, but has limited effects on plasma amino acid profile and growth performance of channel catfish Ictalurus punctatus. Aquaculture. 370-371: 32-39. DOI: 10.1016/j.aquaculture.2012.10.002


Qiyou X, Qing Z, Hong X, Chang'an W, Dajiang S. 2011. Dietary glutamine supplementation improves growth performance and intestinal digestion/absorption ability in young hybrid sturgeon (Acipenser schrenckii female × Huso dauricus male). Journal of Applied Ichthyology. 27(2): 721–726. DOI: 10.1111/j.1439-0426.2011.01710.x


Shen B, Han Y, Lu H, Niu X, Li Z, Zhao C, Wang G. 2013. Effects of Ala-Gln on growth and feed intake of Cyprinus carpio var. Jian reared at different stocking densities. Journal of South China Agricultural University. 34: 241–247. DOI: 10.1016/j.fsi.2016.02.034


Shi L, Feng L, Jiang WD, Liu Y, Jiang J, Wu P, Zhou XQ. 2016. Immunity decreases, antioxidant system damages and tight junction changes in the intestine of grass carp (Ctenopharyngodon idella) during folic acid deficiency: Regulation of nf‐ κb, nrf2 and mlck mRNA levels. Journal Fish andShellfish Immunology. 51: 405–419. DOI: 10.1016/j.fsi.2016.02.029


Solares AC, Viegas I, Salgado MC, Siles AM, Sáez A, Metón I, Baanante IV, Fernández F. 2015. Diets supplemented with glutamate or glutamine improve protein retention and modulate gene expression of key enzymes of hepatic metabolism in gilthead seabream (Sparus aurata) juveniles. Aquaculture. 444 : 79–87. DOI: 10.1016/j.aquaculture.2015.03.025


Sutrisno AY. 2012. Analisis kelayakan usaha pembenihan dan pembesaran ikan lele sangkuriang (Studi kasus: Perusahaan Parakbada, Kelurahan Katulampa, Kota Bogor, Provinsi Jawa Barat) [Skripsi]. Bogor (ID): Institut Pertanian Bogor.


Walter. 1984. Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer. Methods of Enzymatic Analysis. Weinheim.


Wang C.A, Xu QY, Xu H, Zhu Q, Yang JL, Sun DJ. 2011. Dietary L-alanyl-L-glutamine supplementation improves growth performance and physiological function of hybrid sturgeon Acipenser schrenckii♀ × A. baerii♂. Journal Applied  Ichthyology. 27: 727–732. DOI: 10.1111/j.1439-0426.2011.01673.x


Watanabe T. 1988. Fish Nutrition and Mariculture. Department of Aquatic Bioscience. Tokyo University of Fisheries. JICA.


Yan L, Qiu-Zhou X. 2006. Dietary glutamine supplementation improve structure and function of intestine of juvenile jian carp (Cyprinus carpio). Aquaculture. 256(1-4): 389-394. DOI: 10.1016/j.aquaculture.2006.02.011


Yu H, Gao Q, Dong S, Lan Y, Ye Z, Wen B. 2016. Regulation of dietary glutamine on the growth, intestinal function, immunity and antioxidant capacity of sea cucumber Apostichopus japonicus (Selenka). Fish and Shellfish Immunology, 50: 56–65. DOI: 10.1016/j.fsi.2016.01.024


Zhang K, Mai K, Xu W, Liufu Z, Zhang Y, Peng M, Jinghua C, Ai Q. 2017. Effects of dietary arginine and glutamine on growth performance, nonspecific immunity, and disease resistance in relation to arginine catabolism in juvenile turbot (Scophthalmus maximus L.). Aquaculture. 468(1): 246–254. DOI: 10.1016/j.aquaculture.2016.10.021


Zhao Z, Song F, Xu Q. 2017. Effects of glutamine and its precursors on the growth performance and relevant protein synthesis pathway of mirror carp Cyprinus carpio. Fisheries Science. 83: 1019–1026. DOI: 10.1007/s12562-017-1124-y