OPEN ACCESS
PEER-REVIEWED |
RESEARCH ARTICLE
Supplemental enzyme in artificial diets for north african catfish larvae Clarias gariepinus Burchell, 1822
Main Article Content
Abstract
Supplemental enzyme in artificial diets with difference doses for African catfish Clarias gariepinus (initial weight of 0.0048±0.0001 g and total length 0.7633±0.0392 cm) were examined for 12 days feeding trial. The aim of this study was to analyze the effectiveness supplemental enzymes in diets for growth performance of catfish larvae. Tubifex sp. (control) and a multi enzyme was included at the level of 0.00 (ME0), 1.00 (ME1) and 2.00 g kg-1 (ME2 diet as a test diets. Each of the four experimental diets was randomly assigned to four plicate groups. Larva was allocated into 150 L aquaria at a density of 1350 larvae per aquarium. Data was analyzed using SPSS 20, followed by Duncan’s test. The result showed that the survival rate and condition factors were no statistical difference between experimental diets and control group. The highest final length, final weight, total food consumption, villi length and enzymes activity were recorded in the Control (P<0.05) and significantly different with other treatments. Feed efficiency’s control significantly different with other. Harvest size distribution, in the small size group (1-2 cm) did not show significantly different, in the medium size group (2-3 cm) and large size group (3-5 cm) the Tubifex sp. treatment were significantly different from the other treatments (P<0.05) whereas between ME0, ME1 and ME2 treatments were not significantly different. Among the supplemental enzyme in test diets, ME2 can improve weight and total length 6.25% and 13.4%, respectively than ME0 treatment. The results suggested that enzyme supplementation can improve intestinal structure and growth performance of catfish larvae. The supplemental enzyme in diets with doses up to 2 g kg-1 can increase intestinal villi’s length but have not been able to increase fish growth performance as use worm.
Abstrak
Penambahan enzim pada pakan buatan dengan dosis berbeda untuk ikan lele Afrika Clarias gariepinus (bobot awal 0,0048 ± 0,0001 g dan panjang total 0,7633 ± 0,0392 cm) telah dilakukan selama 12 hari. Tujuan penelitian ini adalah untuk menganalisis efektivitas penambahan enzim pada pakan untuk pertumbuhan larva ikan lele. Cacing sutra (kontrol) dan multienzim ditambahkan pada pakan dengan dosis 0,00 g kg-1 (ME0), 1,00 g kg-1 (ME1) dan 2,00 g kg-1 (ME2) pakan. Masing-masing dari empat perlakuan disusun secara acak dengan empat ulangan. Larva ditebar dalam 150 L dengan kepadatan 1350 ekor per akuarium. Data dianalisis menggunakan SPSS 20, dilanjutkan dengan uji Duncan. Hasil menunjukkan bahwas intasan dan faktor kondisi tidak berbeda nyata antarperlakuan. Nilai panjang dan bobot akhir, jumlah konsumsi pakan, panjang vili dan aktivitas enzim tertinggi diperoleh pada kontrol (P<0,05) dan berbeda nyata dengan perlakuan yang lain. Efisiensi pakan kontrol berbeda nyata dengan perlakuan lainnya. Distribusi ukuran panen, pada kelompok kecil (1-2 cm) tidak menunjukkan perbedaan yang nyata, pada kelompok sedang (2-3 cm) dan kelompok besar (3-5 cm) kontrol menunjukkan perbedaan yang nyata, namun antara ME0, ME1 dan ME2 tidak berbeda nyata. Pada perlakuan pakan buatan yang ditambahkan enzim, ME2 dapat meningkatkan bobot dan panjang total 6,25% dan 13,4% dibandingkan ME0. Diduga bahwa penambahan enzim dapat meningkatkan struktur usus dan kinerja pertumbuhan pada larva lele Afrika. Penambahan enzim dengan dosis sampai 2 g kg-1 pakan dapat meningkatkan panjang villi usus, namun belum mampu meningkatkan pertumbuhan ikan sebagaimana penggunaan cacing.
Downloads article
Article Details
Copyright (c) 2020 Jurnal Iktiologi Indonesia |
|
|
References
Adewumi AA. 2014. Growth performance and survival of Clarias gariepinus hatchlings fed different starter diets. Advances in Agricultural, Sciences and Engineering Research, 4(6): 1659-1664.
Ali A, Al-Ogaly SM, Asgah NA, Goddard JS, Ahmed SI. 2007. Effect of feeding different protein to energy (P/E) ratios on the growth performance and bodu composition of Oreochromis niloticus fingerlings. Journal of Applied Ichthyology 24 (1):1-37
AOAC (Association of Official Analytical Chemists). 1990. Official Methods of Analysis. AOAC : 1928.
Ayodeji AA, Yomla R, Torres AJ, Rodiles A, Merrifield DL, Davies SJ. 2016. Combined effects of exogenous enzymes and probiotic on Nile tilapia Oreochromis niloticus growth, intestinal morphology and microbiome. Aquaculture, 462: 61-70.
Bergmeyer HU, Grossl M, Walter HE. 1983. Reagent for enzymatic analysis. In : Bergmeyer HU (Editor). Method of Enzymatic Analysis, 3rd Edition, Volume II. Verlag Che-mie, Weinheim. pp. 274-275.
Chakrabarti I, Gani MA, Chaki KK, Sur R, Misra KK. 1995. Digestive enzyme in 11 freshwater teleost fish species in relation to food habit and niche segregation. Comparative Biochemistry and Physiology. 112A (1) : 167-177.
Chepkirui V, Ngugi CC, Bowman J, OyooOkoth E, Rasowo J, Mugo-Bundi J, Cherop L. 2011. Growth performance, survival, feed utilization and nutrient utilization of African catfish Clarias gariepinus larvae co-fed artemia and a micro-diet containing freshwater atyid shrimp Caridina nilotica during weaning. Aquaculture Nutrition, 17 (2):82-89.
Drew MD, Racz VJ, Gauthier R, Thiessen DL. 2005. Effect of adding protease to coextruded flax : pea or canola : pea product on nutrient digestibility and growth performance of rainbow trout, Oncorhynchus mykiss. Animal Feed Science and Technology, 119 (1-2):117-128.
Elert EV, Agrawal MK, Gebauer C, Jaensch H, Ulrike B. 2004. Protease activity in gut of daphnia magna : evidence for trypsin and chymotrypsin enzymes. Comparative Biochemistry and Physiology part B: Biochemistry and Molecular Biology. 137(3): 287 – 296.
Erlanger BF, Kokowski N, Cohen W. 1961. The preparation and properties of two chromogenic substances of trypsin. Archives of Biochemistry and Biophysic. 95(2): 271-278
Farhangi M, Carter CG. 2007. Effect of enzyme supplementation to dehulled lupin-based
diets on growth, feed efficiency, nutrient digestibility and carcass composition of rainbow trout, Oncorhynchus mykiss (Walbaum). Aquaculture Research, 38(12): 1274 – 1282.
Fishcer AH, Jacobson KA, Rose J, Zeller R. 2008. Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harb Protoc 5.
Geiger R. 1985. Chymotrypsin. In methods of enzymatic analysis, 3rd, Bergmeyer HU. Ed. VCH pub : Deerfield. 5 : 99-118.
Ghomi MR, Shahriari R, Langroudi HF, Nikoo M, von Elert E. 2012. Effects of exogenous dietary enzyme on growth, bodu composition, and fatty acid profiles of cultured great sturgeon Huso huso fingerlings. Aquaculture International, 20(2): 49-254.
Gisbert E, Gimenez G, Fernandez I, Kotzamanis Y, Estevez A. 2009. Development of digestive enzymes in common dentex, Dentex dentex during early ontogeny. Aquaculture, 287(3-4): 381-387.
Hidalgo MC, Urea E, Sanz A. 1999. Comparative study of digestive enzymes in fish with different nutritional habits. Proteolytic and amylase activities. Aquaculture, 170(3-4): 267 - 283
Hofer R, Schiemer F. 1981. Proteolytic activity in digestive tract of several species of fish with different feeding habits. Oecologia, 48(3): 42-345.
Jusadi D, Anggraini RS, Suprayudi MA. 2015. Kombinasi cacing Tubifex dan pakan buatan pada larva ikan patin Pangasianodon hypophthalmus. Jurnal Akuakultur Indonesia, 14(1): 30-37.
Lauff M, Hofer R. 1984. Proteolytic enzymes in fish development and the importance of dietary enzymes. Aquaculture, 37(4): 335346.
Lin S, Mai K, Tan B. 2007. Effect of exogenous enzyme supplementation in diets on growth and feed utilization in tilapia, Oreochromis niloticus x O. Aureus. Aquaculture Research, 38(15):1645-1653.
Lin SY, Selle PH, Court SG, Cowieson AJ. 2013. Protease supplementation of sorghum-based broiler diets enchances amino acid digestibility coefficients in four small intestinal sites and accelerates their rates of digestion. Animal Feed Science and Technology, 183(3-4): 175-183
Mathlouthi N, Lalles JP, Lepercq P, Juste C, Labrier M. 2002. Xylanase and betaglucanase supplementation improve conjugated bile acid fraction in testinal contents and increase villus size of small intestine wall in broiler chickens fed a ryebased diet. Journal of Animal Science, 80(11): 2773 – 2779.
Nash RDM, Valencia AH, Geffen AJ. 2006.The origin of Fulton’s condition factor – setting the record straight. Fisheries History, 31(5): 236-238.
Nazir MI, Srivastava PP, Bhat IA, Muralidhar AP, Varghese T, Gireesh-Babu P, Jain KK. 2018. Expression and activity of trypsin and pepsin during larval development of indian walking catfish, Clarias magur. Aquaculture, 491: 266-272.
Nurhayati, Bambang NPU, Setiawati M. 2014. Perkembangan enzim pencernaan dan pertumbuhan larva ikan lele dumbo, Clarias gariepinus Burchell 1822, yang diberi kombinasi cacing sutra dan pakan buatan. Jurnal Ikhtiologi Indonesia, 14(3) : 167-178
Qiyou X, Qing Z, Hong X, Chang’an W, Dajiang S. 2011. Dietary glutamine supplementation improves growth performance and intestinal digestion/absorption ability in young hybrid sturgeon (Acipenser schrenckii female x Huso dauricus male). Journal of Applied Ichthyology, 27(2):721-726
Sari MN, Wahyuni S, Hammy, Jalaluddin M, Sugito, Masyitha D. 2016. Efek penambahan ampas kedelai yang difermentasi dengan Aspergillus niger dalam ransum terhadap histomorfometri vili usus halus ayam kampung, Gallus domesticus. Jurnal Medika Veterinaria, 10(2):115-119.
Smits CHM, G. Annison. 1996. Non-starch plant polisaccharides in broiler nutrition : towards a physiologically valid approach to theri determination. World’s Poultry Science Journal, 52(2): 203-221.
Tong XH, Xu SH, Liu QH, Li J, Xiao ZZ, Ma DY. 2012. Digestive enzymes activites of turbot, Scophthalmus maximus L during early development stages under culture condition. Fish Physiology and Biochemistry, 38(3): 715 – 724.
Uys W, Hecht T. 1987. Assay on the digestve enzymes of sharptooth catfish, Clarias gariepinus (Pisces: Clariidae). Aquaculture, 63 (1-4): 301 – 313.
Verret JAJ, Torreele E, Spazier E, van der Sluiszen A, Rombout JHWM, Booms R, Segner H. 1992. The development of a functional digestive system in the african catfish Clarias gariepinus (Burchell). Journal of the World Aquaculture Society, 23(4): 286-298.
Verret J, van Tongeren M. 1989. Weaning time in Clarias gariepinus (Burchell) larvae. Aquaculture, 83(1-2): 81-88.
Vinasyiam A. 2014. Aktivitas enzim pencernaan dan kinerja pertumbuhan ikan nila Oreochromis niloticus yang diberi pakan mengandung hormon pertumbuhan rekombinan ikan. Tesis. Sekolah Pascasarjana. Institut Pertanian Bogor.
Worthington V. 1993. Worthington Enzyme Manual. Enzymes and Related Biochemicals Worthington Chemmical, New Jersey, USA. 399 p.
Yildirim YB, Turan F. 2010. Effects of exogenous enzyme supplementation in diets on growth and feed utilization in African catfish, Clarias gariepinus. Journal of Animal Veterinary Advances, 9 (2): 327-331.
Zamini A, Kanani H, Esmaeili A, Ramezani S, Zoriezahra S. 2014. Effects of two dietary exogenous multi-enzyme supplementation, natuzyme and beta-mannanase (Hemicell), on growth and blood parameters of Caspian salmon, Salmon trutta caspius. Comparative Clinical Pathology. 23 (1): 187-192.
Ze S, Qin Lin X, Chowdhury MAK, Nan Chen J, Jun Leng X. 2016. Effects of protease supplementatin in low fish meal pelleted and extruded diets on growth, nutrient retention and digestibility of gibel carp, Carrasius auratus gibelio. Aquaculture, 460: 37-44.
Zhou Y, Yuan X, Liang X, Fang L, Li J, Guo X, Baik X, He S. 2013. Enhancement of growth and intestinal flora in grass carp: the effect of exogenous cellulose. Aquaculture, 416-417: 1-7








