Main Article Content


Arief Wujdi
Maya Agustina
Irwan Jatmiko


Skipjack tuna, Katsuwonus pelamis (Linnaeus, 1758) plays an important role in terms of the marine ecosystems as preyed-upon by shark, billfish, and larger tunas. In order to determine food chain system, there was a gap information as digested skipjack tuna difficult to be identified. This study aimed to determine shape indices to describe the otolith shape of skipjack. The morphometry data were collected from 253 pairs of skipjack tuna’s otolith during February, April, August, and September 2016 from four fishing ports namely Binuangeun, Sadeng, Prigi, and Labuhan Lombok. The data normality and homogenity also determined using Kolmogorov-Smirnov and Levene test respectively. In addition, right and left otolith morphometry were investigated using paired T-test. The shape indices were calculated using six descriptors including form factor (FF), roundness (RO), circularity or compactness (C), rectangularity (Rt), ellipticity (E), and aspect ratio (AR). Multivariate test using MANOVA and Tuckey test also implemented to investi-gate variation among locations. The results showed that the data were distributed normally and homogenly. There were also not significantly difference on otolith morphometry between left and right side (P>0,05). Shape indices also pro-vided in this paper. Skipjack tuna’s otolith has performed as non-rounded, closed to oval, elongated, and irregular surface.AbstrakIkan cakalang, Katsuwonus pelamis (Linnaeus, 1758) berperan penting dalam ekosistem perairan laut, yaitu mangsa bagi jenis hiu, kelompok billfish, dan tuna berukuran besar lainnya. Dalam hal mengungkap hubungan pemangsa dan mangsa dalam suatu rantai makanan, seringkali terjadi kekosongan informasi karena sulitnya mengidentifikasi ikan yang telah tercerna. Penelitian ini bertujuan untuk menentukan bentuk morfologi otolit ikan cakalang berdasarkan nilai indeks bentuk. Data morfometri dikumpulkan dari 253 pasang otolit ikan cakalang pada bulan Februari, April, Agustus, dan September tahun 2016 di empat tempat pendaratan ikan, yaitu: Binuangeun, Sadeng, Prigi, dan Labuhan Lombok. Data morfometri otolit diuji normalitas dan homogenitasnya masing-masing menggunakan uji Kolmogorof-Smirnov dan Levene. Uji T berpasangan juga diterapkan untuk memastikan signifikansi perbedaan antara morfometrik otolit kanan dan kiri. Penghitungan indeks bentuk menggunakan enam deksriptor, yang meliputi form factor (FF), roundness (RO), circularity atau compactness (C), rectangularity (Rt), ellipticity (E), dan aspect ratio (AR). Analisis multivariat menggu-nakan MANOVA dan uji Tuckey juga diterapkan untuk menentukan perbedaan morfometri otolit dari masing-masing lokasi. Hasil menunjukkan bahwa data tersebar normal dan homogen serta tidak terdapat perbedaan yang signi-fikan pada morfometri otolit kanan dan kiri (P>0,05). Penelitian ini juga menyajikan nilai indeks bentuk yang menjelas-kan bentuk morfologi otolit ikan cakalang, yaitu memiliki karakteristik cenderung oval, memanjang, dan memiliki per-mukaan yang tidak beraturan.

indeks bentuk , otolith , ikan cakalang , Samudra Hindia

Downloads article

Download data is not yet available.

Article Details


Copyright (c) 2018 Jurnal Iktiologi Indonesia

  Authors who publish with this journal agree to the following terms:  
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.  
  b.) Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.  
  c.) Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).  
  Creative Commons License
Jurnal Iktiologi Indonesia by Masyarakat Iktiologi Indonesia (MII) is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Permissions beyond the scope of this license may be available at



Aguera A, Brophy D. 2011. Use of saggital oto-lith shape analysis to discriminate North-east Atlantic and Western Mediterranean stocks of Atlantic saury, Scomberesox saurus saurus (Walbaum). Fisheries Re-search, 110(3): 465–471. 10.1016/j.fishres.2011.06.003
Annabi A, Said K, Reichenbacher B. 2013. Inter-population differences in otolith morpho-logy are genetically encoded in the killi-fish Aphanius fasciatus (Cyprinodontifor-mes). Scientia Marina, 77(2): 269–279.
Avigliano E, Domanico A, Sanchez S, Volpedo AV. 2017. Otolith elemental fingerprint and scale and otolith morphometry in Pro-chilodus lineatus provide identification of natal nurseries. Fisheries Research, 186: 1-10. 07.026
Aydin R, Calta M, Dursun S, Coban MZ. 2004. Relationships between fish lengths and otolith length in the population of Chon-drostoma regium (Heckel, 1843) Inhabit-ing Keban Dam Lake. Pakistan Journal of Biology Science, 7(9): 1550–1553. https: //doi. org/10.3923/pjbs.2004.1550.1553
Bani A, Poursaeid S, Tuset VM. 2013. Compa-rative morphology of the sagittal otolith in three species of south Caspian Gobies. Journal of Fish Biology, 82(4): 1321–1332.
Bostanci D, Polat N, Kurucu G, Yedier S, Kontas S, Darcin M. 2015. Using otolith shape and morphometry to identify four Albur-nus species (A. chalcoides, A. escherichii, A. mossulensis and A. tarichi) in Turkish

inland waters. Journal of Applied Ichthy-ology, 31(6): 1013–1022. https://doi. org/10.1111/jai.12860
Burke N, Brophy D, King PA. 2008. Otolith shape analysis: its application for discri-minating between stocks of Irish Sea and Celtic Sea herring (Clupea harengus) in the Irish Sea. ICES Journal of Marine Science, 65(9): 1670–1675. https://doi. org/10.1093/icesjms/fsn177
Cabello MG, Barr EE, Solís EGC, Gómez MP, Boa AG. 2014. Morphometric analysis on sagitta, asteriscus and lapillus of Short-nose Mojarra Diapterus brevirostris (Te-leostei: Gerreidae) in Cuyutlan coastal Lagoon, Colima, Mexico. Revista de Biologia Marina Y Oceanografia, 49(2): 209–223.
Campana SE. 2004. Photographic atlas of fish otoliths of the Northwest Atlantic Ocean. Canadian Special Publication of Fisheries and Aquatic Science Vol. 133. NRC Re-search Press, Ottawa, Canada. 284 p.
Campana SE, Casselman JM. 1993. Stock discri-mination using otolith shape-analysis. Ca-nadian Journal of Fisheries and Aquatic Sciences, 50(5): 1062–1083. https://doi. org/10.1139/f93-123
Campana SE, Neilson JD. 1985. Microstructure of fish otoliths. Canadian Journal of Fisheries and Aquatic Sciences, 42(5): 1014–1032.
Cardinale M, Doering-Arjes P, Kastowsky M, Mosegaard H. 2004. Effects of sex, stock, and environment on the shape of known-age Atlantic cod (Gadus morhua) otoliths. Canadian Journal of Fisheries and Aquatic Science 61(2): 158-167
Chulin AK, Chen HM. 2013. Comparative mor-phological study of otoliths in Taiwanese anguilliformes fishes. Journal of Marine Science and Technology, 21: 77–85.
Duarte-Neto P, Lessa R, Stosic B, Morize E. 2008. The use of sagittal otoliths indiscri-minating stocks of common dolphinfish (Coryphaena hippurus) off northeastern Brazil using multishape descriptors. ICES Journal of Marine Science 65(7): 1144–1152. fsn090

Essington TE, Hunsicker ME, Olson RJ, Maun-der MN, Kitchell JF. 2009. Predation, can-nibalism, and the dynamics of tuna popu-lations. Pelagic Fisheries Research Program, 14(1): 1–4.
Ferguson GJ, Ward TM, Gillanders BM. 2011. Otolith shape and elementalcomposition: complementary tools for stock discrimina-tion of mulloway (Argyrosomus japoni-cus) in southern Australia. Fisheries Re-search, 110(1): 75–83. 1016/j.fishres.2011.03.014
Fonteneau A, Nishida T, Nakamura I, Seret B. 2009. Schooling finfish: an overview of the tunas, billfishes, and sharks. In: P. Safran (ed.), Fisheries and Aquaculture. Oxford, United Kingdom: EOLSS Pu-blishers Co. Ltd. pp. 42–79.
Gauldie RW, Crampton JS. 2002. An ecomor-phological explanation of individual variability in the shape of the fish otolith: comparison of the otolith of Hoplostethus atlanticus with other species by depth. Journal of Fish Biology, 60(5): 1204–1221. 1938
He T, Cheng J, Qin J, Li Y, Gao T. 2017. Com-parative analysis of otolith morphology in three species of Scomber. Ichthyological Research, 65(2): 192-201. 10.1007/s10228-017-0605-4
Homayuni H, Marjani M, Sabet HM. 2013. Des-criptive key to otoliths of three Sardinella species (Pisces, Clupeidae) from the Northern Oman Sea. AACL Bioflux, 6(3): 211–221.
Hunsicker ME, Olson RJ, Essington TE, Maun-der MN, Duffy LM, Kitchell JF. 2012. Po-tential for top-down control on tropical tunas based on structure of predator-prey interactions. Marine Ecology Progress Series, 445: 263–277. 10.3354/meps09404
Hussy K, Mosegaard H,Albertsen CM, Nielsen EE, Hansen JH, Eero M. 2016. Evaluation of otolith shape as a tool for stock discri-mination in marine fishes using Baltic Sea cod as a case study. Fisheries Research, 174: 210–218. j.fishres.2015.10.010
Jawad LA, Al-Jufaili SA, Al-Shuhaily SS. 2008. Morphology of the otolith of the greater lizardfish Saurida tumbil (Pisces: Syno-dontidae). Journal of Natural History, 42(35–36): 2321–2330. 1080/00222930802130278
Jawad LA, Ambuali A, Al-Mamry JM, Al-Busa-idi HK. 2011. Relationship between fish length and otolith length, width and weight of the Indian mackerel Rastrelliger kanagurta (Cuvier, 1817) collected from the Sea of Oman. Ribarstvo, 69(2): 51–61.
Libungan LA, Palsson S. 2015. ShapeR: An R Package to study otolith shape variation among fish populations. PLoS ONE, 10(3): 1-12. journal.pone.0121102
Libungan LA, Oskarsson GJ, Slotte A, Jacobsen JA, Palsson S. 2015. Otolith shape: a po-pulation marker for Atlantic herring Clu-pea harengus. Journal of Fish Biology, 86(4): 1377–1395. /jfb.12647
Nielsen JR, Methven DA, Kristensen K. 2010. A statistical discrimination method using sagittal otolith dimensions between sibling species of juvenile cod Gadus morhua and Gadus ogac from the northwest Atlantic. Journal of Northwest Atlantic Fishery Science, 43: 27–45. 2960/J.v43.m667
Pascoe PL. 1986. Fish otoliths from the stomach of a thresher shark. Journal of the Marine Biological Association of the United Kingdom, 66(2), 315–317. 10.1017/S0025315400042958
Polito MJ, Trivelpiece WZ, Karnovsky NJ, Eli-zabeth Ng, Patterson WP, Emslie SD. 2011. Integrating stomach content and stable isotope analyses to quantify the diets of pygoscelid penguins. PLoS ONE, 6(10): 1–10. journal.pone.0026642
Ponton D. 2006. Is geometric morphometrics ef-ficient for comparing otolith shape of dif-ferent fish species?. Journal of Morpholo-gy, 267(6): 750–757. 10.1002/jmor
Popper AN, Ramcharitar J, Campana SE. 2005. Why otoliths? Insights from inner ear physiology and fisheries biology. Marine and Freshwater Research, 56(5): 497–504.
Reichenbacher B, Reichard M. 2014. Otoliths of five extant species of the annual killifish

Nothobranchius from the East African sa-vannah. PLoS ONE, 9(11): 1–12. https: //
Reichenbacher B, Sienknecht U, Küchenhoff H, Fenske N. 2007. Combined otolith mor-phology and morphometry for assessing taxonomy and diversity in fossil and ex-tant killifish (Aphanius, Prolebias). Jour-nal of Morphology, 268(10): 898–915.
Sadighzadeh Z, Otero-Ferrer JL, Lombarte A, Fatemi MR, Tuset VM. 2014. An approach to unraveling the coexistence of snappers (Lutjanidae) using otolith mor-phology. Scientia Marina, 78(3): 353–362. 03982.16C
Sadighzadeh Z, Tuset VM, Valinassab T, Dad-pour MR, Lombarte A. 2012. Comparison of different otolith shape descriptors and morphometrics for the identification of closely related species of Lutjanus spp. from the Persian Gulf. Marine Biology Research, 8(9): 802–814. 10.1080/17451000.2012.692163
Santificetur C, Conversani VRM, Brenha-Nunes MR, Giaretta MB, Siliprandi CC, Rossi-Wongtschowski CLDB. 2017. Atlas of marine bony fish otoliths (sagittae) of Southeastern-Southern Brazil Part V: Per-ciformes (Sparidae, Sciaenidae, Polynemi-dae, Mullidae, Kyphosidae, Chaetodonti-dae, Mugilidae, Scaridae, Percophidae, Pinguipedidae, Blenniidae, Gobiidae, Ephippidae, Sphyraenidae, Gempylidae, Trichiuridae, Scombridae, Ariommatidae, Stromateidae and Caproidae). Brazilian Journal of Oceanography, 65(2): 201-257.
Secor DH, Dean JM, Laban EH. 1992. Otolith removal and preparation for microchemi-cal examination. In: D.Stevenson and S. Campana (Eds), Otolith microstructure examination and analysis. Canadian Special Publication of Fisheries and Aquatic Sciences Volume. 117. Ottawa, Canada: pp. 19–57.
Seyfabadi J, Afshari M, Valinassab T. 2014. Oto-lith morphology and body size relation-ships of Nemipterus japonicus (Bloch, 1791) in the Northern Oman Sea. Indian Journal of Fisheries, 61(2): 112–117.
Sparre P, Venema SC. 1999. Introduksi Pengka-jian Ikan Tropis Buku 1: Manual. Diterje-mahkan oleh Pusat Penelitian dan Pe-ngembangan Perikanan. Badan Penelitian dan Pengembangan Pertanian. Jakarta. 438 p.
Tuset VM, Lombarte A, Assis CA. 2008. Otolith atlas for the western Mediterranean, north and central eastern Atlantic. Scientia Marina, 72(72S1): 7–198. 10.3989/scimar.2008.72s17
Tuset VM, Lombarte A, González JA, Pertusa JF, Lorente MJ. 2003. Comparative mor-phology of the sagittal otolith in Serranus spp. Journal of Fish Biology, 63(6): 1491–1504.
Tuset VM, Rosin PL, Lombarte A. 2006. Sagittal otolith shape used in the identification of fishes of the genus Serranus. Fisheries Re-search, 81(2–3): 316–325. /10.1016/j.fishres.2006.06.020
Valinassab T, Seyfabadi J, Homayuni H, Afraie Bandpei MA. 2012. Relationships bet-ween fish size and otolith morphology in ten clupeids from the Persian Gulf and Gulf of Oman. Cybium, 36(4): 505–509.
Vignon M. 2012. Ontogenetic trajectories of otolith shape during shift in habitat use: interaction between otolith growth and environment. Journal of Experimental Marine Biology and Ecology, 420-421: 26–32. 2012.03.021
Wujdi A, Setyadji B, Nugroho SC. 2017. Identi-fikasi struktur stok ikan cakalang (Katsu-wonus pelamis Linnaeus, 1758) di Samu-dra Hindia (WPP NRI 573) menggunakan analisis bentuk otolith. Jurnal Penelitian Perikanan Indonesia, 23 (2): 77-88. http: //
Yilmaz S, Yazicioglu O, Saygin S, Polat N. 2014. Relationships of otolith dimensions with body length of European perch, Per-ca fluviatilis L., 1758 from Lake Ladik, Turkey. Pakistan Journal of Zoology, 46(5): 1231–1238.
Yilmaz S, Yazicioglu O, Yazici R, Polat N. 2015. Relationships between fish length and otolith size for five cyprinid species from Lake Ladik, Samsun, Turkey. Turkish Journal of Zoology, 39(3): 438–446.
Zengin M, Saygin S, Polat N. 2015. Otolith shape analyses and dimensions of the An-
chovy Engraulis encrasicolus L in the Black and Marmara Seas. Sains Malay-siana, 44(5), 657–662.
Zischke MT, Litherland L, Tilyard BR, Stratford NJ, Jones EL, Wang Y. 2016. Otolith morphology of four mackerel species (Scomberomorus spp.) in Australia: Spe-cies differentiation and prediction for fisheries monitoring and assessment. Fisheries Research, 176: 39–47. https: //
Zorica B, Sinovèiæ G, Èikeškeè V. 2010. Preli-minary data on the study of otolith mor-phology of five pelagic fish species from the Adriatic Sea (Croatia). Acta Adriatica, 51(1): 89–96.