Kondisi biometrik ikan nila, Oreochromis niloticus (Linnaeus 1758) yang terpapar merkuri [Biometric condition of nile tilapia, Oreochromis niloticus (Linnaeus 1758) after mercury exposure]


Ilham Zulfahmi, Ridwan Affandi, Djamar T.F. Lumban Batu
 DOI  https://doi.org/10.32491/jii.v14i1.94

Abstract

The aims of this study are to examine the changes in biometric variables of nile tilapia caused by mercury exposure. The study was conducted from February to June 2013. Test fish were exposed to 0 mg L-1, 0.164 mg L-1, and 0.196 mg L-1 mercury chloride for 56 days. Analysis was done for the survival rate, growth rate, hepatosomatic index, the relative bile volume, gonadal somatic index, fecundity, and oocyte diameter. The median lethal concentration (96 hrs, LC50) of mercury chloride was calculated as 1.64 mg L-1. The survival rate was highest in the control treatment (46.67%). Mercury chloride with concentration 0.196 mg L-1 shows significant effect to changes HSI and relative bile volume, and oocyte diameter of Nile tilapia (p<0.05). Mercury chloride with a concentration of 0.164 mg L-1and 0.196 mg L-1 have not a significant effect on the growth rate of weight, gonadal somatic index, and fecundity of nile tilapia (p>0.05).

 

Abstrak

Penelitian ini bertujuan untuk mengkaji perubahan beberapa variabel biometrik ikan nila akibat dari paparan merkuri. Penelitian dilakukan dari bulan Februari hingga Juni 2013. Ikan nila berukuran panjang 11-13 cm dengan bobot rata-rata 20 gram dipaparkan pada tiga konsentrasi merkuri klorida (0 mg L-1; 0,164 mg L-1; dan 0,196 mg L-1) selama 56 hari. Analisis dilakukan terhadap tingkat kelangsungan hidup, laju pertumbuhan bobot, indeks hepatosomatik (HSI), volume empedu relatif, indeks kematangan gonad, fekunditas dan diameter telur. Hasil penelitian menunjukkan bahwa nilai LC50-96 jam merkuri klorida adalah sebesar 1,64 mg L-1. Tingkat kelangsungan hidup tertinggi terdapat pada perlakuan 0 mg L-1 (46,67%) dan terendah pada perlakuan 0,196 mg L-1 (40,00%). Merkuri klorida dengan konsentrasi 0,196 mg L"1 memberikan pengaruh yang nyata terhadap perubahan HSI dan volume empedu relatif serta ukuran diameter telur ikan nila (p<0,05). Namun pada konsentrasi 0,164 mg L-1dan 0,196 mg L-1 merkuri klorida tidak ber-pengaruh nyata terhadap laju pertumbuhan bobot, indeks kematangan gonad (IKG) dan fekunditas ikan nila (p>0,05).



Keywords

hepatosomatic index (HSI); mercury chloride; acute toxicity

Full Text:

PDF

References

Ay O, Kalay M, Tamer L, Canli M. 1999. Copper and lead accumulation in tissues of a freshwater fish Tilapia zillii and its effects on the branchial Na+/K+-ATPase activity.

Bulletin Environmental Contamination and Toxicology, 62(2):160-168.

Batchelar KL, Kidd KA, Munkittrick KR, Drev-nick PE, Burgess NM. 2013. Reproductive health of yellow perch (Perca flavescens) from a biological mercury hotspot in Nova Scotia, Canada. Science of the Total Environment, (454-455):319-327.

Broeg K. 2003. Acid phosphatase activity in liver macrophage aggregates as a marker for pollution-induced immunomodulation of the non-specific immune response in fish. HelgolandMarine Research, 57(3):166-175.

Bleau H, Daniel C, Chevalier G, Van Tra H, Hontela A. 1996. Effects of acute exposure to mercury chloride and methyl mercury on plasma cortisol, T3, T4, glucose and liver glycogen in rainbow trout, Oncorhynchus mykiss. Aquatic Toxicology, 34:221-235.

Bunton TE, Frazier JM. 1994. Extrahepatic tissue copper concentrations in white perch with hepatic copper storage. Journal of Fish Biology, 45(4):627-640.

Clark R. 2001. Marine pollution. Oxford University Press. New York. 231 p.

Clarkson TW. 2002. The three modern faces of mercury. Environmental Health Perspectives, 110(1): 11-23.

Clarkson TW, Magos L. 2006. The toxicology of mercury and its chemical compounds. Critical Reviews in Toxicology, 36(8):609-662.

Diez S. 2009. Human health effects of methyl-mercury exposure. Reviews Environmental Contamination Toxicology, 198:111-132.

Dijkstra M, Havinga R, Vonk RJ, Kuipers F. 1996. Bile secretion of cadmium, silver, zinc and copper in the rat. Involvement of various transport systems. Life Sciences, 59(15):1237-1246.

Effendie MI. 1979. Metoda biologi perikanan. Yayasan Dewi Sri. Bogor. 112 hlm.

Figueiredo-Fernandes AA, Ferrera-Cardoso JV, Garcia-Santos S, Monteiro SM, Carrola J, Matos, Fontainhas-Fernandes. 2006. Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper. Pesquisa Veterinaria Brasileira, 27(3):103-109.

Finney DJ. 1971. Probit analysis. Cambridge University Press, New York. 245 p.

Giguere A, Campbell PG, Hare L, McDonald DG, Ramussen JB. 2004. Influence of lake chemistry and fish age on cadmium, copper, and zinc concentrations in various organs of indigenous yellow perch (Perca flavescens). Journal of Fisheries and Aquatic Sciences, 61(9):1702-1716.

Grosell M, O’Donnell MJ & Wood CM. 2000. Hepatic versus gallbladder bile composition: in vivo transport physiology of the gallbladder in rainbow trout. American Journal of Physiology: Regulatory Integrative and Comparative Physiology, 278: 1674-1684.

Henczova M, Deer AK, Filla A, Komlosi V, Mink J. 2008. Effects of Cu2+ and Pb2+ on different fish species: Liver cytochrome P-450-dependent monooxygenase activities and FTIR spectra. Comparative Biochemistry and Physiology, 148:53-60.

Htun-han M. 1978. The reproductive biology of the dab Limanda limanda (L) in the North Sea; gonadosomatic Index; Hepatosomatic Index and condition factor. Journal of Fish Biology, 13(3):369-378.

Jalius D. Djokosetiyanto D, Sumantadinata K, Riani E, Ernawati Y. 2008. Akumulasi logam berat dan pengaruhnya terhadap spermatogenesis kerang hijau (Perna viridis). Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia, 15(1):77-83.

Kasper D, Palermo EFA, Dias ACM, Ferreira GL, Leitao RP, Branco CWC, Malm O. 2009. Mercury distribution in different tissues and trophic levels of fish from a tropical reservoir. Neotropical Ichthyology, 7(4): 751-758.

Kehrig HA, Costa M, Moreira I, Malm O. 2002. Total and methyl mercury in a Brazilian estuary, Rio de Janeiro. Marine Pollution Bulletin, 44(10):1018-1023.

Kong X, Wang S, Jiang H, Nie G, Li G. 2012. Responses of acid/alkaline phosphatase, lysozyme, and catalase activities and lipid peroxidation to mercury exposure during the embryonic development of goldfish (Carassius auratus). Aquatic Toxicology, (120-121):119-125.

Lakra WS, Nagpure NS. 2009. Genotoxicological studies in fishes: a review. The Indian Journal of Animal Sciences, 79(1): 93-98.

Lam SH, Winata CL,Tong Y, Korzh S, Lim WS, Korzh V. 2006. Transcriptome kinetics of arsenic-induced adaptive response in zebra-fish liver. Physiological Genomics, 27(3): 351-61.

Lu CF. 1995. Toksikologi dasar. Universitas Indonesia Press, Jakarta. 290 hlm.

Mathan R, Kurunthachalam SK, Priya M. 2010. Alterations in plasma electrolyte levels of a freshwater fish Cyprinus carpio exposed to acidic pH. Toxicological Environmental and Chemistry, 92(1):149-157.

Morozov DN, Vysotskaya RU. 2007. Comparative study of bile acid composition of bile of the European vendace Coregonus albula L. and the European whitefish Coregonus lavaretus L. under conditions of technogenic water reservoir pollution. Journal of Evolutionary Biochemistry and Physiology, 43(5):490-494.

Neves RLS, Oliviera TF, Ziolli RL. 2007. Polycyclic aromatic hydrocarbons (PAHs) in fish bile (Mugil liza) as biomarkers for environmental monitoring in oil contaminated areas. Marine Pollution Bulletin, 54(1): 1818-1824.

Palar H. 2004. Pencemaran dan toksikologi logam berat. Penerbit Rineka Cipta. Jakarta. 152 him.

Pandey S, Kumar R, Sharma S, Nagpure NS, Srivastava SK, Verma MS. 2005. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch). Ecotoxicology and Environmental Safety, 61(1):114-120.

Poopal RK, Mathan R, Bheeman D. 2013. Shortterm mercury exposure on Na+/K+-ATPase activity and ion oregulation in gill and brain of an Indian major carp, Cirrhinus mrigala. Journal of Trace Elements in Medicine and Biology, 27(1):70-75.

Purnomo T, Muchyiddin. 2007. Analisis kandungan timbal (Pb) pada ikan bandeng

(Chanos chanos Forsk.) di Tambak Keca-matan Gresik. Neptunus, 14(1):68-77.

Ram RN, Sathyanesan AG. 1983. Effect of mercuric chloride on the reproductive cycle of the teleostean fish Channa punctatus. Bulletin of Environmental Contamination and Toxicology, 30(1):24-27.

Roberts RJ. 1978. Fish pathology. Bailliere Tin-dal. London. 571 p.

Stagg R-M, Rusin J, Brown F. 1992. Na+ /K+ ATPase activity in the gills of the flounder (Platichthys flesus L.) in relation to mercury contamination in the firth of forth. Marine Environmental Research, 33(4):255-266.

Steffens W. 1989. Principles of fish nutrition. Ellis Horwood Limited, West Sussex, England. 384 p.

Ullrich SM, Tanton TW, Abdrashitova SA. 2001. Mercury in the aquatic environment: a review of factors affecting methylation. Critical Reviews in Environment Science and Technology, 31(3):241-93.

United States Environmental Protection Agency (US-EPA). 1991. Methods for measuring the acute toxicity of effluent and receiving waters to freshwater and marine organisms. 4th edition. U.S. Environmental Protection Agency. Washington D.C. United States. 247 p.

Article Metrics

 10.32491/jii.v14i1.94
   Abstract views: 745   PDF views or download: 339

 

Copyright (c) 2017 Jurnal Iktiologi Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.