Ekspresi gen aromatase pada pengarahan diferensiasi kelamin ikan nila (Oreochromis niloticus Linnaeus 1758) menggunakan madu [Aromatase gene expression of sex reversal Nile tilapia (Oreochromis niloticus Linnaeus 1758) using honey]


Eny Heriyati, nFN Alimuddin, Harton Arfah, Agus Oman Sudrajat
 DOI  https://doi.org/10.32491/jii.v15i1.74

Abstract

In tilapia aquaculture, all male populations are preferred because they achieve higher growth rates and prevent uncontrolled reproduction. Sex reversal techniques are largely used for the control of sex in fish farming and in fundamental studies on sex determinism mechanisms. The study was conducted to determine the effect of immersion Nile tilapia larvae in water containing different honey source on male percentage and aromatase gene expression. In experiment I, a total of 30 tilapia larvae at 12 days post hatch were immersed in water containing honey derived from the forest, cultured and mangrove bees, at a dose of 10 ml L-1 for 10 hours. Fish were maintained in the same condition for two months. The results showed that percentage of male fish was similar among honey treatments (p>0.05), and they were significantly different with the control (p<0.05). In experiment II, fish were immersed in two bioactive compounds of honey, namely chrysin and potassium solution in a dose of 20 mg L-1 and 0.026 g L-1, respectively, to verify the bioactive affects sex differentiation. Aroma-g expression was analyzed by RT-PCR method. Tissue was collected at 1, 6, 12, 24 and 48 hours after immersion, and 2-month-old fish. Size fragment DNA aroma-g of female 200 bp. Chrysin and potassium immersion increased male percentage (p<0.1), this indicated that both materials were involved in Nile tilapia sex differentiation. RT-PCR analysis showed that honey, chrysin and potassium down-regulated aroma-g expression at 12 hours post immersion. Thus, honey can be used for sex reverse of Nile tilapia, and the mechanism is most likely as aromatase inhibitors.

 


Abstrak

Budi daya ikan nila dengan populasi jantan semua (monoseks) lebih memberikan keuntungan karena laju pertumbuhan-nya lebih cepat dan dapat mencegah pemijahan liar.Teknik pengarahan diferensiasi kelamin(sex reversal) digunakan untuk mengarahkan pembentukan jenis kelamin pada budi daya ikan.Penelitian ini dilakukan untuk mengevaluasi pe-ngaruh perendaman larva ikan nila menggunakan tiga sumber madu berbeda terhadap persentase ikan jantan dan ekspresi gen aromatase. Pada percobaan satu, 30 larva ikan nila berumur 12 hari setelah menetas direndam menggunakan madu hutan, madu ternak dan madu bakau, dengan dosis 10 ml L-1 air selama 10 jam. Ikan dipelihara dalam kondisi yang sama selama dua bulan. Hasil penelitian menunjukkan bahwa persentase ikan jantan tidak berbeda nyata antar perlakuan madu (p>0,05), tetapi semuanya berbeda nyata dengan kontrol (p<0,05). Pada percobaan kedua, larva ikan nila direndam dalam air mengandung dua bahan bioaktif madu, yakni chrysin dan kalium dengan dosis masing-masing 20 mg L-1 dan 0,026 g L-1. Ekspresi gen aromatase tipe gonad (aroma-g) dan tipe otak (aroma-o) dianalisis menggunakan metode RT-PCR. Sampel jaringan diambil pada waktu 1, 6, 12, 24, dan 48 jam pascaperlakuan madu, chrysin, dan kalium, serta setelah ikan berumur dua bulan.Ukuran fragmen DNA aromatase pada gonad betina sekitar 200 bp. Perendaman chrysin dan kalium meningkatkan persentase ikan jantan (p<0,1). Analisis RT-PCR menunjukkan bahwa madu, chrysin, dan kalium dapat menekan ekspresi gen aroma-g pada jam ke-12 pascaperendaman. Dengan demikian dapat disimpulkan bahwa madu, chrysin dan kalium dapat digunakan untuk pengarahan diferensiasi ikan nila, dan mekanis-menya seperti penghambat aromatase.

Keywords

aromatase; honey; Nile tilapia; sex reversal

Full Text:

PDF

References

Baroiller JF, D’Cotta H. 2001. Environment and sex determination in farmed fish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 130(4): 399409

Baroiller JF, D’Cotta H, Saillant E. 2009a. Environmental effects on fish sex determination and differentiation. Sexual Development, 3(2-3): 118-135

Baroiller JF, D’Cotta H, Bezavlt E, Wessel S, Hoerstgen-Scwark G, 2009b. Tilapia sex determination: Where temperature and genetics meet. Comparative Biochemistry and Physiology-Part A : Molecular and Integrative Physiology, 151(1):30-38

Brett D, Pospisil H, Valcarcel J, Reich J, Bork P. 2001.Alternative splicing and genome complexity. Nature Genetics, 30(1): 29-30

Bwanika GN, Murie DJ, Chapman LJ. 2007. Comparative age and growth of Nile tila-pia (Oreochromis niloticus L.) in lakes Nabugabo and Wamala, Uganda. Hydro-biologia, 589(1): 287-301

Capelo AS, Cremades A, Tejada F, Teodomiro F, Penafiel R. 1993. Potassium regulates plasma testosterone and renal ornithinedecar-boxylase in mice. Federation of European Biochemical Societies Letters, 333(1-2): 32-34

Dabrowski K, Gustavo R, Mary AGA. 2005. Use of phytochemicals as an environmentally friendly method to sex reverse Nile tilapia. Fish Nutrition and Feed Technology Research, 3 (11) : 287-303

D’cotta H, Fostier A, Guiguen Y, Govoroun A, Baroiller JF. 2001. Aromatase plays a key role during normal and temperature-induced sex differentiation of tilapia Oreochro-mis niloticus. Molecular Reproduction and Development, 59(3): 265-276.

Dean W. 2004. Chrysin: is it an effective aromatase inhibitor? Vitamin Research Products News, 18(4): 4-5

Diotel N, Page YL, Mouriec, Sok-Keng T, Pellegrini E, Vaillant C, Anglade I, Brion F, Pakdel F, Bonchu C, Kah O. 2010. Review. Aromatase in the brain of teleost fish: Expression, regulation and putative functions. Frontiers in Neuroendocrinology 31 (2): 172-192

Ferreres F, Tomaas-Barberaan FA, Gil MAI, Francisco Tomaas-Lorente F. 1991. An HPLC technique for flavonoid analysis in honey. Journal of the Science of Food and Agriculture, 56(1): 49-56.

Guerrero RD, Shelton WL. 1974. An acetocar-mine squash technique for sexing juvenile fishes. The Progressive Fish-Culturist, 36(1): 56

Gennotte V, Kinkela PM, Ulysse B, Djetouan DA, Sompagnimdi FB, Tomson T, Me lard C, Rougeot C. 2014. Brief exposure of embryos to steroids or aromatase inhibitor induces Sex Reversal in Nile Tilapia (Ore-ochromis niloticus). Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 323(1): 31-38

Howell WM, Hunsinger RN, Blanchard PD. 1994. Paradoxical masculinization of female mosquito fish during exposure to spiro nolactone. The Progressive Fish-Cultu-rist, 56(1) : 51-55.

Ijiri S, Kaneko H, Kobayashi T, Wang De-Shou W, Sakai F, Paul-Prasanth B, Nakamura M, Nagahama Y. 2008. Sexual dimorphic expression of genes in gonads during early differentiation of a teleost fish, the Nile tilapia Oreochromis niloticus. Biology of Reproduction, 78(2) : 333-341

Kikuchi K, Hamaguchi S. 2013. Novel sex-determining genes in fish and sex chromosome evolution. Developmental Dynamics, 242 (4): 339-353

Kitano T, Takamune K, Nagahama Y, Abe S. 2000. Aromatase inhibitor and 17 alpha-methyltestosterone cause sex-reversal from genetical females to phenotypic males and suppression of P450 aromatase gene expression in Japanese flounder (Paralichthys olivaceus). Molecular Reproduction and Development 56(1): 1-5.

Kwon YJ, Haghpanah V, Kogson-Hurtado LM, McAndrew BJ, Penman DJ. 2000. Masculinization of genetic female Nile tilapia (Oreochromis niloticus) by dietry administration of an aromatase inhibitor during sexual differentiation. Journal of Experimental Zoology 287(1): 46-53.

Le Bail JC, Laroche T, Marre-Fournier F, Habrioux G. 1998. Aromatase and 17p-hydroxysteroid dehydrogenase inhibition by flavonoids. Cancer Letters, 133(1): 101-106.

Matty AJ. 1985. Fish Endocrinology. Timber Press Portland. USA. 267 p

Mukti AT, Mubarak AS, Ermawan A. 2008. Pengaruh penambahan madu dalam pakan in-duk jantan lobster air tawar red claw (Cherax quadricarinatus) terhadap rasio jenis kelamin larva. Jurnal Ilmiah Peri-kanan dan Kelautan, 1(1): 37-42

Poonlaphdecha S, Pepey E, Huang SH, Canonne M, Soler L, Mortaji S, Morand S, Pfennig F, Melard C, Baroiller JF, D’cotta H. 2011. Elevated amh gene expression in the brain of male tilapia (Oreochromis niloticus) during testis differentiation. Sexual Development, 5 (1): 33-47.

Popma T, Masser M. 1999. Tilapia life history and biology. Southern Regional Aquaculture Center Publication, No. 283: 1-4

Reddon AR, Hurd PL. 2013. Water pH during early development influences sex ratio and male morph in a West African cichlid fish, Pelvicachromis pulcher. Zoology, 116 (3): 139-143

Oldfield RG. 2005. Genetic, abiotic and social influences on sex differentiation in cichlid fishes and the evolution of sequential hermaphroditism. Fish and Fisheries, 6(2): 93-110.

Sever DM, Halliday T, Waight V, Brown J, Davies HA, Moriarty EC. 1999. Sperm storage in female of the smoth new (Triturus v. vulgaris L.): I. ultrastructure of the spemathecae during the breeding season. Journal of Experimental Zoology, 283(1): 51-70.

Soelistyowati DT, Martati E, Arfah H. Efektivitas madu terhadap pengarahan kelamin ikan gapi (Poecilia reticulata Peters). Jur-nal Akuakultur Indonesia, 65(2): 155-160

Syaifuddin A. 2004. Pengaruh pemberian suplemen madu pada pakan larva ikan nila (Oreochromis niloticus) GIFT terhadap rasio jenis kelaminnya. Skripsi. Fakultas Perikanan. Universitas Brawijaya. 69 hlm

Utomo B. 2008. Efektivitas penggunaan aromatase inhibitor dan madu terhadap nisbah kelamin ikan gapi (Poecilia reticulata Peters). Skripsi. Program Studi Teknologi dan Manajemen Perikanan Budi daya, Fakultas Perikanan dan Ilmu Kelautan. Insti-tut Pertanian Bogor.48 hlm.

Article Metrics

 10.32491/jii.v15i1.74
   Abstract views: 306   PDF views or download: 168

 

Copyright (c) 2017 Jurnal Iktiologi Indonesia
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Refbacks

  • There are currently no refbacks.